

© Copyright 2007 Garry McGlennon

Chapter 2

WMI: Introduction

Many of you will probably not have heard of WMI (Windows Management

Instrumentation) before or if you have there’s a good chance you know very little about it.

WMI is Microsoft’s primary management enabling technology for Windows so you would

think more people would have heard about it. Some say that WMI is Microsoft’s best kept

secret, so you’re not alone when it comes to not knowing much about it. By the end of

this and the next Chapter, you’ll have gained enough information to know why knowing

this secret is important. If you think that this topic doesn’t really affect you, then that’s

only because you haven’t read the rest of the Chapter. Although WMI is commonly used

by Administrators to monitor both local and remote machines using scripts, developers

also need to know about WMI as well. Sometimes it can be the only place where you can

find a piece of information, or it could significantly reduce the amount of code you need to

perform a given task. You also need to know about WMI if you want your applications to

be monitored in production by third party applications or those Administrators and their

scripts. If you have used WMI before you will have probably used the COM based API’s;

the .NET equivalent should prove to be easier to use.

WMI 101

WMI has been around since 1998 (appears Microsoft can be good at keeping secrets

sometimes) when it was released as part of the Windows NT 4.0 Service Pack 4. Since

then it has been incorporated into Windows 2000, Windows XP and Windows .NET

Server and forms the core management technology in these systems. It is also available for

download at the Microsoft Web site for Windows 9x operating systems. WMI is

Microsoft’s implementation of the Web-Based Enterprise Management (WBEM)

specification, which is an industry initiative overseen by the Distributed Management Task

Force (DMTF) to develop a standard technology for accessing management information in

an enterprise environment. The standard was used to address the ability to access,

configure, manage and monitor system resources. The result is that using the Microsoft

implementation of WBEM (WMI) you can perform these tasks with just about every

Windows resource. You’ll get a better understanding of what this really means as you

work your way through the Chapter. Also, you may have looked ahead and noticed that

WMI is mentioned in many of the Chapters that follow. This is because you can use WMI

or the managed classes to do many of the same things. There are advantages and

disadvantages to each, but I will explore both so you can make the correct choice when

the time comes. However, that is later; first you need to understand what WMI is and how

it works so you can have a better understanding of the next few Chapters.

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 2

Tip: WMI is based on the WBEM specification; this means WMI is not a Microsoft

specific technology. Searching the internet for WBEM will discover other

implementations for other Operating Systems such as Linux.

Terminology

Having just covered a bit of the history; let’s now look at the more technical parts of

WMI. Given that WMI is fairly new to a lot of you, I’ll start by defining a number of terms

that you’ll need to understand to make proper use of this technology.

 * Provider: Acts as an intermediary between WMI and a managed
resource, such as an Event Log. Providers request information from,
and send instructions to the WMI managed resource on behalf of
consumer applications and scripts.

 * Consumer: Is a script, enterprise management application or any other
application that makes use of WMI resources.

 * CIM: The Common Information Model is a schema, also known as the
object repository or class store that models the managed environment
and defines every piece of data exposed by WMI.

 * CIMOM: CIM Object Manager (pronounced see-mom) handles the
interaction between consumers and providers. The term originates from
the WBEM specification maintained by the DMTF. You can think of
CIMOM as the WMI information broker in that all WMI requests and
data go through the CIMOM.

 * Class: A class is a template for a discrete WMI managed resource, and
all instances of the resource use this template. Classes represent the
things computers have such as disks, event logs, files, folders, memory,
printers, processes, processors and so on. Classes can be thought of in
the same way as an abstract class in .NET in that it provides the
interface or schema for a class instance.

 * Namespaces: CIM classes are organized into namespaces. Much like
you partition your classes into namespaces in .NET, the CIM also uses
this type of mechanism to control the scope and visibility of managed
resource class definitions. Note that although the concept is the same as
.NET class namespaces their implementations are not related.

 * Events: WMI allows you to register for events which will notify you
when any WMI object is created, deleted or modified.

 * Remotable: Allows access to objects which are stored on other
machines. Microsoft chose DCOM for this purpose, although the
performance of standard DCOM produced a lot of excess overhead. To
improve performance, Microsoft developed sophisticated custom
proxies and stubs to compress information and minimize this overhead.
These proxies and stubs are transparent to the developer, but they are
responsible for the awesome performance of remote connections.

WMI can be used to build tools that organize and manage system information so that

administrators or system managers can monitor system activities more closely. As an

example, you can develop an application using WMI that pages an administrator when a

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 3

Web server crashes, or have a badly behaving process terminated if it exceeds more than

90% of CPU usage. Microsoft describes WMI in their documentation in the following

way:

Windows Management Instrumentation (WMI) is a scalable system management

infrastructure that uses a single consistent, standards-based, extensible, object-oriented

interface. WMI provides you with a standard way to interact with system management

information and the underlying WMI APIs. WMI is used primarily by system management

application developers and administrators to access and manipulate system management

information.

Why use WMI?

Given that you’re knowledge about WMI may be limited a good question to start with

would be why use it? WMI essentially wraps a lot of what already exists, so why would

you want to have yet another layer on top of the existing APIs. There are a number of

good reasons to make use of the power that WMI offers whether you’re an administrator

or developer. WMI allows access to an enormous amount of information about both local

and remote machines. If you need to know something about the system and you can’t find

a managed class that provides the information, then there’s a high probability that WMI

will come to your rescue. To give you some idea, if you are running Windows 2000 you

would have approximately 600 classes and with Windows XP approximately 900. The

number of classes will depend on the version of Windows you’re running and the software

you have installed. As you’ll learn later, WMI provides all this information in a standard

way. How many times have you either had trouble finding a particular API to provide the

information you wanted or couldn’t quite work out how to use it when you did. APIs in

general have been poorly documented; WMI has much better documentation and is in

general much easier to understand. The most important aspect however is that there is an

enormous amount of information ready to be used. Some of the key reasons why you

would use WMI are:

 * Industry Standard: Uses an industry standard class-based schema. The
benefit here is that the classes can be very precise in their definition and
this allows others to easily understand and use your classes. This also
aids in the Administration side as the schema is also discoverable.

 * Simple Object Model: Easy access to management objects through
either a scripting interface or through a programming language such as
VB.NET, Visual Basic 6, Windows Scripting, C# or C++.

 * Query Language: WMI provides an infrastructure for executing WQL
(WMI Query Language) queries. If a provider doesn’t support query
optimization, WMI will provide it for free. The query language is based
on SQL and so is also easy to learn.

 * Easier deployment: When developing DCOM solutions you need a
proxy-stub DLL to be installed on each of the client machines. By
contrast accessing WMI management objects requires no additional
installation on client machines, assuming WMI is available.

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 4

 * Extensibility: The model is designed to allow new provider modules
which supply data and events to be plugged in. Some of the existing
provider modules that are currently available include Microsoft Internet
Information Server (IIS), SQL Server, Active Directory, Event Logging
and Performance Counters. This is by no means a definitive list as just
about every system related resource has a provider in Windows. Also, it
doesn’t end with Microsoft provided providers. Many ISVs are also
providing WMI enabled applications which can be managed by any
WMI aware application.

 * Remotable: An extremely powerful feature of WMI is that it is
remotable using DCOM and custom marshaling for improved
performance. This is a particularly good feature as many otherwise
equivalent framework classes that provide the same data don’t provide
this ability.

 * Events: WMI provides a high performance and extensible event
mechanism which a consumer of the event can use to be notified when
any WMI object is created, deleted or modified. For example if you
want to know when the CPU usage becomes greater than 85%, you
could get WMI to notify you via an event. You can also define
permanent consumers which are components that are invoked whenever
a specified event occurs. WMI also comes with a set of standard
consumers that perform tasks such as running scripts, creating events in
the event log or sending an email upon receiving a WMI event.

What can I do with WMI?

Using WMI, an application can detect and discover management information such as what

operating system (including the service pack number) is installed on a server. This can be

either the local machine or one locked away in a remote location. An application can also

determine how many processors the computer system has, which services are running in a

process, which network connections are currently open, and which domains have a trust

relationship with the local domain of the host computer.

With the power that WMI provides you can perform actions against management

objects such as stopping or starting a process or a service, deleting all disk drive shares,

recursively unloading all running Web applications from a specific IIS virtual directory,

and other dangerous things. The good news is that WMI performs these actions on behalf

of the client, so you will be able to do only as much the client context permissions allow.

Using WMI, an application can also receive management event notifications for such

things as when a specified service stops, when the amount of free space on a system disk

drops below a certain limit (I wish more IT departments used this one!), when a process

uses more than a specified amount of virtual memory, when an application has

encountered a significant error condition and raised a WMI event, and so on. As

mentioned earlier WMI is not restricted to just system resources. Applications can also

provide WMI services; SQL Server is one such application, which allows you to be

notified if a table changes or has data added, deleted or modified. To list all the things you

can possibly do with WMI would take a book in itself; however, I would start checking

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 5

the applications you interface with and discover what their WMI capabilities are, because

you may be surprised what they will let you do.

What are my Options?

When it comes to your options or what you can do with WMI, it would almost be easier

to try and describe what you can’t do as opposed to what you can do. There are a few

different options however for actually programming WMI itself which I’ll detail below. I’ll

also cover the more common providers available for WMI, but again I can’t stress enough

that this is only scratching the surface of what information lies within the CIM.

 * Managed Classes: Using the classes found in the System.Management
namespace you can access any WMI class. There are classes for
retrieving class data and also for hooking into WMI events. The model
is also said to be easier than its COM counterpart, as it has many
specific class types.

 * Server Explorer: Microsoft introduced a Beta version of their WMI
snap-in for VS.NET 2002 and then released a version for VS.NET 2003
(a.k.a. Everett) shortly after its release. It is highly recommended that
you download this plug-in for your version of VS.NET. See the
resources section for the URL details.

Table 2-1 – Sample of WMI Providers

Provider Namespace Description

Active Directory root\directory\ldap Active Directory is the Windows directory service

that provides a unified view of complex networks.

Event Log root\cimv2 Allows access to Windows Event logs. Supported

features include: read, backup, clear, copy, delete,

monitor, rename compress, uncompress and event

log settings.

Performance

Counters

root\cimv2 Provides access to performance data. These can be

both system supplied or your own custom counters.

Registry root\default Able to read, write enumerate, monitor, create and

delete registry keys and values.

SNMP root\snmp Provides access to SNMP MIB Data and traps from

SNMP managed devices.

Win32 root\cimv2 This is the core namespace and provides access to

computers, disks, peripheral devices, files, folders,

networking, operating system, printers, processes,

security and so much more!

Windows Installer root\cimv2 Provides access to information about what has been

installed on a system.

From Table 2-1 you can see there is a large range of information that can be accessed

using WMI, which prior to WMI (remembering WMI is a pre .NET technology) would

have required extensive knowledge of the Win32 API. Now it is fairly easy to access this

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 6

information from both .NET and from the older COM based API. For more information

about the COM based version of the API see the resources section at the end of the

Chapter.

Choosing the correct option

I have detailed the different options available, however how do you know which options

to use in any given situation? This section will discuss each of the available options, and

when you might like to make use of them. They are of course only suggestions, and you

will ultimately need to consider your applications overall architecture when making a

decision.

Managed Classes

If you are going to be accessing WMI from within .NET you will ultimately be using the

managed classes provided in the System.Management namespace. The main choice you

have hear is; do I make use of the Server Explorer (see below) or code directly against the

frameworks classes. The ‘problem’ with the managed classes is that they are late bound in

that they use the same object for any class type. This means you can introduce errors into

your code if you are not careful. It also means IntelliSense doesn’t get a look in either;

you’ll need to know the name of the properties you want to access on a given CIM class.

Like anything that is late bound you can create your own wrappers for any given class

that you use regularly which removes the disadvantages just mentioned. However, it also

means you have a bit of code to write and you’ll loose the generic nature that WMI

provides.

My personal preference is to go with wrappers where it suits, but given the power that

WMI provides you’ll probably find it difficult to create a wrapper that is intuitive yet still

retains all the power of WMI. There will therefore have to be a compromise in this

respect. Later in the book I show you how to create a fairly complex wrapper for the

Event Log class, which will demonstrate many of the advantages that WMI provides.

Server Explorer

As mentioned previously Microsoft developed WMI Extensions for Visual Studio.NET

2002 and 2003. These extensions which are covered in detail later allow you to easily

attach to WMI classes without knowing very much about WMI. Obviously, the more you

know about WMI the better your use of the extensions will be, however for many simpler

tasks, very little WMI knowledge is required. The extensions also allow you to drag and

drop resources onto a Form in a similar manner to any other resource managed by Server

Explorer (see Chapter 1). As will be covered later this produces a new class in your

project which acts as a wrapper for the resource you’ve selected. Although the amount of

source code produced can be quite large, it does simplify the development of WMI

applications. Therefore as a recommendation I would make is to make use of the

extensions to the extent that you feel they are required. You may decide to create your

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 7

own wrapper classes rather than rely on the ones produced by Microsoft; however their

classes appear to be quite comprehensive for a given resource.

Installing WMI for VS.NET

Unfortunately Microsoft didn’t make the extensions part of VS.NET 2003, so you’ll still

need to download and install it; this applies to VS.NET 2002 also. You can download the

beta or RTM version from the URL in the resources section at the end of the Chapter.

Once you’ve downloaded the setup file, ensure your VS.NET is closed then you only need

to run the msi file and your done!

How to make use of these extensions will be covered in detail in the WMI Server

Explorer Extension section in the next Chapter.

WMI Architecture

The WMI architecture consists of three core layers with a few sub layers as shown in

Figure 2-1. I will discuss each of these layers starting at the bottom and working our way

up. The top layer being the application you will be coding.

Figure 2-1. WMI Architecture

Managed System

The managed system consists of any logical or physical component, that is exposed and

manageable using WMI. Examples of such resources would be the computer system, event

logs, files, disks, peripherals, printers, security settings, Active Directory, Windows

Installer and Windows Driver Model (WDM) device drivers to name only a few. These

resources communicate with WMI via a provider which is covered next.

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 8

Provider

As mentioned previously a provider acts as the intermediary between WMI and the

managed system. Providers request and send information to WMI managed resources on

behalf of a consumer request. The providers do a good job of hiding the implementation

details from the consumer. This is achieved by exposing the resource to WMI based on the

standards based access model. The providers communicate with the managed resource via

the resources native Win32 APIs, and communicate with CIMON using WMI

programming interfaces.

Although there are many built in providers which are part of the later versions of

windows (see Table 2-1), developers can also build their own custom providers. I will

cover how to do this in the next Chapter.

CIM Object Manager

As previously mentioned CIMON is the information broker which all requests for data

flow though. Apart from providing the common interface through which consumers access

WMI, the CIMON provides a set of core services.

 * Event processing: Allows a consumer to subscribe to events that
represent a change to a WMI-managed resource. For example, you can
subscribe to an event indicating when the amount of space on a logical
disk drive drops below an acceptable threshold. The CIMOM polls the
managed resource at an interval you specify, and generates an event
notification when the subscription is satisfied.

 * Provider registration: WMI providers register location and capability
information with the CIMOM. This information is then stored in the
CIM repository.

 * Query processing: Allows a consumer to issue queries against any
WMI-managed resource using the WMI Query Language (WQL). For
example, you can query the event logs for all events matching a specific
Event ID, which occurred during the past 24 hours. The CIMOM
performs the evaluation of the query in cases where providers don't
natively support query operations. In these cases the performance may
be slow if the provider contains a lot of information.

 * Remote access: Consumers access remote WMI-enabled systems by
connecting to the CIMOM on the remote system. Once a connection is
established, consumers can perform the same operations that can be
performed locally.

 * Request routing: The CIMOM uses the provider registration
information to route a consumer.

 * Security: The CIMOM controls access to WMI-managed resources by
validating each user's access token before the user is permitted to
connect to WMI, on either the local computer or a remote computer.
WMI does not override or circumvent security provided by the
operating system.

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 9

Consumers of WMI make use of the services provided by the CIMON to mine data,

subscribe to events, or to perform some other management related task. The CIMON also

acts as the wrapper around the CIM Repository which is covered next.

CIM Repository

The CIM is based on the DMTF Common Information Model Standard schema. This

schema allows a uniform representation of management information from various sources.

The CIM is also built upon the notion of classes that represent objects created and stored

in the repository. Most of the classes that are stored in the CIM act only as templates for

the providers. This allows you to access the class definitions, but no actual instance data is

stored within the CIM. There are a few classes which do however store some data within

the CIM, but these are the exception rather than the rule. This architecture allows the

most accurate information to be provided to the consumer of the resource as it is supplied

by the underlying provider at the time it is requested.

Namespaces

All CIM classes are organized into namespaces. In the same way you can use namespaces

in your .NET applications to organize and control the scope and visibility of your

assembly; so does the CIM. Although the concept is the same, its implementation has no

connection to that used in .NET. The namespaces are grouped by related classes

representing a specific technology or area of management. As with any namespace

implementation, each class within a namespace must be unique. However, unlike some

implementations, classes from one namespace cannot be derived from a class in another

namespace.

The most common namespace you will deal with is root\cimv2 (the default) although it

will not be the only one you will need to deal with. For example if you wanted to access

the registry you would need to use root\default; know one seems to know why it’s in this

namespace, given all the other system related resources are in root\cimv2.

It’s important to understand namespaces because when you connect to WMI, you also

connect to a default namespace if you don’t supply one. This is important because if you

try to access a class from a different namespace you will get an error. To ensure that you

are always working with the correct namespace you should specifically define the

namespace you are interested in.

Note: I will show you how to build a query tool in the next section, which will be

used to test your queries. This tool will allow you to run your queries easily and

enable you to test any data query. A reference to the tool within any code

snippets informs you of the item in the dropdown list which relates to the query.

You’ll also see a reference to Result which can be either Summary or Detail; this

will become clearer when we build the tool.

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 10

The following code which was taken from the QueryTool project you will build later

demonstrates how you would connect to a specific computer and namespace; the details of

which will be covered a little later:

Dim objScope As ManagementScope

objScope = New ("\\" & Me.txtMachine.Text & "\" & Me.txtDefaultNamespace.Text)

You then supply this object when you execute your queries:

Dim objWMISearcher As ManagementObjectSearcher

objWMISearcher = New (objScope, New ObjectQuery(Me.txtQuery.Text))

Note: The standard default namespace is a registry setting and can therefore be

changed. This may result in your code no longer working as expected. It is

therefore recommended that you always explicitly define the default namespace

you are working with. The registry key is:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WBEM\Scripting\Default

Namespace.

If you wanted to know what the current default namespace for your WMI service is,

you can write a simple WQL query to find out:

' QueryTool: Namespaces: Default

SELECT ASPScriptDefaultNamespace FROM Win32_WMISetting

' Result (Detail):

ASPScriptDefaultNamespace: root\cimv2

You can also find out what namespaces are available, this can be useful if you want to

know if a machine has a particular namespace installed. For example if you were running

Windows .NET Server you would see the namespace root\MicrosoftDNS, however if you

were running Windows XP as I am, you won’t. You can try this yourself using the

following query:

' QueryTool: Namespaces

SELECT * FROM __NAMESPACE

' Result (Summary):

\\INSPIRON8200\ROOT:__NAMESPACE.Name="SECURITY"

\\INSPIRON8200\ROOT:__NAMESPACE.Name="RSOP"

\\INSPIRON8200\ROOT:__NAMESPACE.Name="Cli"

\\INSPIRON8200\ROOT:__NAMESPACE.Name="WMI"

\\INSPIRON8200\ROOT:__NAMESPACE.Name="CIMV2"

\\INSPIRON8200\ROOT:__NAMESPACE.Name="MSAPPS10"

\\INSPIRON8200\ROOT:__NAMESPACE.Name="Policy"

\\INSPIRON8200\ROOT:__NAMESPACE.Name="Microsoft"

\\INSPIRON8200\ROOT:__NAMESPACE.Name="DEFAULT"

\\INSPIRON8200\ROOT:__NAMESPACE.Name="directory"

\\INSPIRON8200\ROOT:__NAMESPACE.Name="subscription"

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 11

\\INSPIRON8200\ROOT:__NAMESPACE.Name="NetFrameworkv1"

Tip: To change the default namespace used in the QueryTool, go to the Management

Scope tab.

If you wanted to find all the namespaces within another namespace then you would

have to recursively traverse each of the namespaces resetting the default namespace using

code. WMI doesn’t allow you to perform this type of query natively.

WMI Consumer

Consumers are the top layer in the WMI architecture. A consumer can be a script,

enterprise management application, web application, or any other WMI enabled

administrative tool. Some consumers can also serve as providers such as Application

Center, Operations Manager, and Systems Management Server. In this case they provide

information about their resources to other applications while monitoring the resources of

other applications via WMI.

Querying with WQL

The Windows Management Instrumentation Query Language (WQL) is a subset of the

standard American National Standards Institute Structured Query Language (ANSI SQL)

with minor semantic changes to support WMI. WQL supports the following query types:

 * Data queries: Data queries are used to retrieve class instances and data
associations. They are the most commonly used type of query in WMI
scripts and applications.

 * Event queries: Consumers use event queries to register to receive
notification of events. Event providers use event queries to register
support for one or more events.

 * Schema queries: Schema queries are used to retrieve class definitions
(rather than class instances) and schema associations. Class providers
use schema queries to specify the classes that they support when they
register.

To understand the various query types I will spend some time on the query syntax so

the remaining sections will be clearer.

WQL 101

Like SQL for databases WQL is designed to allow easy retrieval of data from the CIM

repository. The core statements which are supported by WQL are:

 * SELECT: Used by data and event query types, to retrieve class
instances. Its purpose is similar to that of SQL. You can also specify the
field or property names as in SQL. Also like SQL the more verbose
syntax is also the quickest as you only bring back the required data.

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 12

 SELECT * FROM Class ' Simplier but slower

 SELECT Property1, Property2 FROM Class ' More verbose but faster

 * ASSOCIATORS OF: Used by schema query types. There is no SQL
equivalent and it is used to return associated class endpoints. More
detail on this statement is provided later in the chapter.

 ASSOCIATORS OF {ClassInstance}

 * REFERENCES OF: Used by schema query types. There is no SQL
equivalent. The REFERENCES OF statement is similar to the
ASSOCIATORS OF statement in its syntax. However, rather than
retrieving endpoint instances, it retrieves the intervening association
instances. More detail on this statement is provided later in the chapter.

 REFERENCES OF {ClassInstance}

 * WHERE: Used by all query types to add criteria in a similar manner to
that used in SQL.

 SELECT * FROM Class WHERE __Class = "Win32_LogicalDisk"

 ASSOCIATORS OF {ClassInstance} WHERE SchemaOnly

 REFERENCES OF {ClassInstance} WHERE ResultClass = ClassName

 * ISA: Used by all query types to further refine the WHERE clause, it
restricts the query to instances that are members of any class deriving
from the specified class.

 SELECT * FROM Class WHERE __this ISA "SubClass"

The following table lists the rest of the WQL syntax broken up by those keywords

which are related to SQL and those which are not. Where a keyword is prefixed with two

underscores (__), they are system related.

Table 2-2. SQL equivalent keywords

WQL keyword Meaning

AND Combines two Boolean expressions and returns TRUE when both of the

expressions are TRUE.

FALSE Boolean operator that evaluates to 0.

FROM Specifies the class that contains the properties listed in a SELECT statement.

Unlike SQL, WMI only supports data queries from one class at a time.

IS Comparison operator used with NOT and NULL. The syntax for this statement

is

 IS [NOT] NULL

 where NOT is optional.

LIKE Operator that determines whether a given character string matches a specified

pattern.

NOT Comparison operator that can be used in any WQL SELECT query. For

example:

 SELECT * FROM meta_class WHERE NOT __class < "Win32" AND NOT

__this ISA "Win32_Account"

NULL Indicates that an object has no explicitly assigned value. NULL is not equivalent

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 13

to zero or blank.

OR Combines two conditions.

 When more than one logical operator is used in a statement, OR operators are

evaluated after AND operators.

TRUE Boolean operator that evaluates to -1.

Table 2-3. WQL specific keywords

WQL keyword Meaning

__CLASS References the class of the object in the query. This keyword is only available in

Windows 2000 and later.

__NAMESPACE Used to query namespaces based on the location defined by the default

namespace.

__Win32Provider Used to query Win32Providers based on the location defined by the default

namespace

__TargetInstance Used in the where clause this keyword specifies that only objects of the intended

class or its subclasses are of interest.

 Used in conjunction with ISA

 … WHERE __TargetInstance ISA 'Win32_NTLogEvent'

KEYSONLY Used in REFERENCES OF and ASSOCIATORS OF queries so that the

resulting instances are only populated with the keys of the instances, thereby

reducing the overhead of the call. This keyword is available in Windows XP and

later.

HAVING Filters the events that are received during the grouping interval specified in the

WITHIN clause.

GROUP Causes WMI to generate a single notification to represent a group of events.

 Use this clause with event queries.

WITHIN Specifies either a polling interval or a grouping interval.

 Use this clause with event queries.

There are many more system related classes contained within the WMI SDK, I

recommend that you have a look through the documentation and run some test queries

using the query tool against the other classes. You can find a reference to the SDK in the

references section of this Chapter.

Examples

It might be best if I show some examples of how these work. The following are examples

of what you may wish to do with WMI and WQL.

To make things a little easier you will build a simple query tool, which will allow you

to easily run the queries and teach you the basic objects to use at the same time.

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 14

There is a bit of UI work in this Query tool, and as I suspect you know basic UI

design so I won’t go into the detail of how to drop controls on a form as it doesn’t really

add anything to what we are discussing. The only thing I will mention is that I’ve made

extensive use of the anchor feature. Also you may not be aware that unless you set the

MaxLength field of the text box to zero you will by default only be able to store 32768

bytes. You can see the finished tool in Figure 2-2. There are two main screens one for

querying and the other to set remote computer properties. In Figure 2-2, I have set the

remote user and password, although in this actual instance it’s not being used as I’m only

using the local machine as defined by the ‘.’.

Figure 2-2. WMI Query tool

The core code to get everything working is quite basic; this is because WMI is late

bound and so any data query is treated the same way. All the code to run the queries is

placed under the Execute Query button:

Private Sub btnExecute_Click(ByVal sender As System.Object, ByVal e As _

 System.EventArgs) Handles btnExecute.Click

 ' This is where all the good stuff is!

 Dim intRecordCount As Integer

 Try ' Errors in your WQL are common so we will watch for that.

 Me.lblStatus.Text = "Status: Processing Query..."

 Application.DoEvents()

 ' Define where to run our WQL Query

 ' Step 1: Define the scope of our WQL Query

 Dim objScope As New ManagementScope(String.Format("\\{0}\{1}", _

 Me.txtMachine.Text, Me.txtDefaultNamespace.Text))

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 15

 ' Step 2: If a remote machine is selected setup the username & password

 If Me.txtMachine.Text <> "." Then

 objScope.Options.Username = Me.txtUserName.Text

 objScope.Options.Password = Me.txtPassword.Text

 objScope.Options.Impersonation = ImpersonationLevel.Impersonate

 objScope.Options.Authentication = AuthenticationLevel.Packet

 End If

 ' Define the options that will be used, including the use of Amended

 ' Qualifiers

 Dim objWMIOptions As New EnumerationOptions()

 With objWMIOptions

 .UseAmendedQualifiers = True

 End With

 ' Step 3 & 4: Define the query and supply the scope aswell

 Dim objWMISearcher As New ManagementObjectSearcher(objScope, _

 New ObjectQuery(Me.txtQuery.Text), objWMIOptions)

 Dim objWMIClass As ManagementBaseObject

 ' We use the Stingbuilder class here, because well its SUPER! Fast

 ' compared to simply appending text to the text box.

 Dim strbResult As System.Text.StringBuilder = _

 New System.Text.StringBuilder()

 Me.txtResults.Text = "" ' Clear any previous results

 ' Determine what the user wants - Detailed or summary

 If Me.chkDetailed.Checked Then

 ' Step 5: Display all the properties for the object (can be long!)

 For Each objWMIClass In objWMISearcher.Get()

 strbResult.Append(String.Format("---<BEGIN: {0}>---{1}", _

 objWMIClass.ToString, vbCrLf))

 Dim objProperty As Management.PropertyData

 For Each objProperty In objWMIClass.Properties

 ' Step 6: Access property details

 ' Some properties can be arrays of varying types, so we pass

 ' it off to a separate function to handle each property

 ' correctly.

 strbResult.Append(objProperty.Name & ": " & _

 Me.GetPropertyData(objProperty))

 ' This code segment adds any Qualifiers to the output too

 If Me.chkQualifiers.Checked Then

 ' Display the qualifiers under the property name, which

 ' can also be of varying Array types too.

 Dim objQualifier As System.Management.QualifierData

 For Each objQualifier In objProperty.Qualifiers

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 16

 strbResult.Append(" Qualifier: " & _

 objQualifier.Name & " - " & _

 Me.GetQualifierData(objQualifier))

 Next

 End If

 Next

 strbResult.Append(String.Format("---<END: {0}>---{1}", _

 objWMIClass.ToString, vbCrLf))

 Me.lblStatus.Text = "Record: " & intRecordCount

 Application.DoEvents()

 ' Check to see if we are only displaying a certain number of

 ' records.

 If CType(Me.txtMaxRecords.Text, Integer) <> 0 Then

 If intRecordCount >= CType(Me.txtMaxRecords.Text, _

 Integer) Then

 Exit For

 End If

 End If

 intRecordCount += 1

 Next

 Else

 ' Step 5: Simply display a one line summary for each object

 For Each objWMIClass In objWMISearcher.Get()

 ' Step 6: This example doesn’t access properties, but it could

 strbResult.Append(String.Format("{0}{1}", _

 objWMIClass.ToString, vbCrLf))

 Next

 End If

 ' Render the results to the Text Box

 Me.txtResults.Text = strbResult.ToString

 Me.lblStatus.Text = "Status: Ready..."

 Catch ex As Exception

 ' Opps we have an error

 Me.lblStatus.Text = String.Format("Error: {0}", ex.Message)

 MessageBox.Show("ERROR: " & ex.Message)

 End Try

End Sub

Private Function GetPropertyData(ByVal objProperty As PropertyData) As String

 Dim strResult As String

 If objProperty.IsArray Then

 ' As there are numerous types of array types such as Uint8, string etc

 ' its easier (if not as efficient) to iterate through the collection

 ' coverting each element to its string representation

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 17

 Dim i As Integer

 Dim strbResult As System.Text.StringBuilder = New _

 System.Text.StringBuilder()

 ' Note by default the value property isn't an array. However, we

 ' know it is because we tested the IsArray property first.

 ' As each array type can be different we have to handle each type

 ' seperately as they won't cast to object. The following code is

 ' repetitive but required.

 Select Case TypeName(objProperty.Value)

 Case "Byte()"

 Dim arrItems As Byte()

 arrItems = CType(objProperty.Value, Byte())

 For i = 0 To arrItems.Length - 1

 strbResult.Append(arrItems(i).ToString)

 strbResult.Append(", ")

 Next

 Case "String()"

 Dim arrItems As String()

 arrItems = CType(objProperty.Value, String())

 For i = 0 To arrItems.Length - 1

 strbResult.Append(arrItems(i).ToString)

 strbResult.Append(", ")

 Next

 Case "Nothing"

 ' There is no data to deal with

 strbResult.Append(", ") ' It will be removed later.

 Case Else

 strbResult.Append("Unknown Array type: " & _

 TypeName(objProperty.Value) & vbCrLf & ", ")

 End Select

 strResult = strbResult.ToString

 ' remove the last comma before returning the string

 strResult = strResult.Substring(0, strResult.Length - 2)

 Else

 strResult = SafeValue(objProperty.Value)

 End If

 Return strResult & vbCrLf

End Function

Private Function GetQualifierData(ByVal objQualifier As QualifierData) As String

 Dim strResult As String

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 18

 If TypeOf objQualifier.Value Is Array Then

 ' Code ommited here as its basically the same as GetPropertyData

 ' however it uses the objQualifier object instead.

 ...

 Else

 strResult = SafeValue(objQualifier.Value)

 End If

 Return strResult & vbCrLf

End Function

Private Function SafeValue(ByVal objValue As Object) As String

 ' Some properties contain nulls so we make them ""

 If objValue Is Nothing Then

 Return ""

 Else

 Return objValue.ToString

 End If

End Function

Tip: When you create your own code, it’s not recommended that you dump it all in one

routine like has been done here; especially not in the UI.

Although the code appears to be fairly long it’s really only because of the extra frills

I’ve added. The core code to get things working without the frills is fairly small and I’ll go

through the steps to ensure you understand what’s happening. The following steps apply

to any data or schema type query; I will cover the steps for an event query later.

1. Define the Management Scope, which is used if you need to connect to a
remote computer and/or change the default namespace. This step is
optional, however if omitted you will use the default scope which will be
your local machine and generally the root\cimv2 namespace.

1. Next if you are connecting to a remote machine you may need to supply
credentials in the way of a username and password. You assign these
details to the instance of the ManagementScope object.

2. Define a WQL Query.

3. Assign the query to an instance of the ManagementObjectSearcher class.
This class executes your query and returns a result set of
ManagementBaseObject objects.

4. Iterate through the collection of ManagementBaseObject classes
returned. This class is a generic view of the class you’re interested in;
properties of the concrete class are accessed via the Properties collection.

5. Access the properties of the returned class.

Tip: If you are unfamiliar with the use of String.Format, it allows you to define a string

with numbered placeholders between braces {0..n}. You can then supply the values for

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 19

the placeholders as parameters to the function. This can make your strings easier to

read as you can see the actual string more clearly.

This is all the above code is really doing, I have added a bit of extra code to iterate

through the properties and qualifiers so that you can have a detailed option in the query

tool; I’ll discuss the code dealing with qualifiers in more detail when I talk about qualifiers.

When you begin to code your own queries you can follow the steps above and add any

extra frills as required. More details on the security aspects can be found in the next

Chapter.

Note: If you supply property names in your query which don’t include those used

by the ToString property of the class, the summary result in the query tool will be

blank.

 Now I’ll show some sample WQL which you’ll find conveniently contained in the

dropdown list so you won’t have to type them in to have a go.

How do I find out who’s logged onto a particular computer?

This information is contained within the Win32_ComputerSystem class. Therefore to

show the username and domain of the currently logged on user you would use:

' QueryTool: Current User

SELECT UserName, Domain FROM Win32_ComputerSystem

Result (Detail):

Domain: OFFICE

UserName: INSPIRON\Patricia

Now you might be thinking I’m not Patricia (assuming you read the front cover of the

book) and you’d right. Using the query tool you just developed I defined the Management

Scope to be a remote computer within my network in this case \\INSPIRON, this was

done to demonstrate that you can query any computer that is WMI capable.

Is my college’s computer better than mine?

Well assuming you have the correct permissions for their computer (which may be

doubtful) you can find out all kinds of things about their new computer. The components

of most interest are probably the CPU, how much memory it has and what model they

managed to score. This requires two separate queries because unlike SQL, WQL doesn’t

allow more than one class in the FROM clause. The two queries you need are as follows:

' QueryTool: CPU

SELECT Name, MaxClockSpeed, CurrentClockSpeed FROM Win32_Processor

Result (Detail):

CurrentClockSpeed: 1184

MaxClockSpeed: 2193

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 20

Name: Mobile Intel(R) Pentium(R) 4 - M CPU 2.20GHz

' QueryTool: Computer Hardware Specs

SELECT UserName, Model, TotalPhysicalMemory FROM Win32_ComputerSystem

Result (Detail):

Model: Inspiron 8200

TotalPhysicalMemory: 536272896

UserName: INSPIRON8200\Garry

Note: WQL does not support cross-namespace queries or associations. You

cannot query for all instances of a specified class residing in all the namespaces

on the target computer.

So now you know the specs of my machine and how easy it is to do the same with any

computer with which you have the correct permissions. This can also be used for more

serious work as well. Determining the specs of machines around the office when put into a

help desk application would aid in diagnosing issues with applications that require

powerful machines. You can also write WQL that will tell you what software is on a given

machine, which again can be very useful both from an administrative viewpoint, and

possibly as a startup check for your applications; as you may have software dependencies

such as Microsoft Excel.

Warning: WQL like its cousin SQL can cause a heavy drain on resources if a poorly

constructed query is executed. I’d recommend testing any WQL locally before unleashing

it onto someone else’s machine.

Although the previous queries may seem trivial they do present the potential power

that WMI offers. It also demonstrates that WQL is not that different from its SQL cousin.

You can think of a class as being similar to a table and the properties being similar to fields

within a table. This also applies to the WHERE clause as you’ll see in further examples

throughout the Chapter. Where it does start to differ is when you start using events and

querying the schema which I will cover shortly.

Meta Data Queries

To finish off this section I’ll show you how to query for classes that are contained within

the CIM. This can be very useful if you want to know what classes are in a given

namespace or you want to know which classes in the CIM derive from a particular super

class. The following query returns all the classes within the current namespace.

' QueryTool: Meta Data: Class List

SELECT * FROM meta_class

Result (Summary):

\\INSPIRON8200\ROOT\cimv2:__SystemClass

\\INSPIRON8200\ROOT\cimv2:__thisNAMESPACE

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 21

\\INSPIRON8200\ROOT\cimv2:__Provider

\\INSPIRON8200\ROOT\cimv2:__Win32Provider

\\INSPIRON8200\ROOT\cimv2:__IndicationRelated

\\INSPIRON8200\ROOT\cimv2:__EventGenerator

\\INSPIRON8200\ROOT\cimv2:__TimerInstruction

\\INSPIRON8200\ROOT\cimv2:__IntervalTimerInstruction

\\INSPIRON8200\ROOT\cimv2:__AbsoluteTimerInstruction

\\INSPIRON8200\ROOT\cimv2:__Event

...

If you were instead interested in all the classes that were directly derived from

Win32_Account, then you would use the following query.

' QueryTool: Meta Data: Find Super Class

SELECT * FROM meta_class WHERE __SUPERCLASS = 'Win32_Account'

Result (Summary):

\\INSPIRON8200\ROOT\cimv2:Win32_UserAccount

\\INSPIRON8200\ROOT\cimv2:Win32_SystemAccount

\\INSPIRON8200\ROOT\cimv2:Win32_Group

Understanding these queries gives you a lot of scope for discovering things about the

classes that the CIM holds. You can also experiment with the above queries by turning on

the detailed and qualifier options which will show you a lot more detail about the classes.

Data Queries

The most common type of query is a data query as you will mostly want to retrieve

instances of classes from the CIM. For example assume you wish to retrieve the names of

the applications from the Application Event Log that have a message type of ‘error’.

Running the following query in our query tool, produces the following results (note: you

will get different results on you computer).

' QueryTool: EventLog: Application & Error

SELECT * FROM Win32_NTLogEvent WHERE Logfile = 'Application' and Type='error'

Result (Summary):

\\INSPIRON8200\root\cimv2:Win32_NTLogEvent.Logfile="Application",RecordNumber=86

.NET Classes

However, suppose you want to code it yourself, I have already covered the steps of doing

this previously. However, the WMI object model does provide other classes to reduce the

amount of knowledge you need.

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 22

Figure 2-3. Several objects can be used to query WMI

Note: The following samples can be found in the WQL Samples.vb file in the

WMI Samples project.

This code performs the same function as the more generic version; however notice the

query I use. I am also passing to the ManagementObjectSearcher class a SelectQuery

object instead of the ObjectQuery object I used previously. This object is derived from the

ObjectQuery base class (see Figure 2-3).

Shared Sub IterateApplicationEventLog()

 ' Step 1: Define Scope

 Dim objScope As New ManagementScope("\\.\root\cimv2")

 ' Step 2: Credentials not required in this case – local machine

 ' Step 3: Define Query

 Dim objWMIQuery As New Management.SelectQuery("Win32_NTLogEvent")

 With objWMIQuery

 .Condition = "Logfile = 'Application' and Type='error'"

 End With

 ' Step 4: Execute Query

 Dim objWMISearcher As New ManagementObjectSearcher(objScope, _

 objWMIQuery)

 Dim objWMIClass As ManagementBaseObject

 ' Step 5: Iterate through results

 For Each objWMIClass In objWMISearcher.Get()

 ' Step 6: Access properties

 Debug.WriteLine(objWMIClass.Properties("SourceName").Value.ToString)

 Next

End Sub

When coding data queries you need to follow the following basic steps each time

which is independent of the type of class you are trying to access.

1. Define the Management Scope, which is used if you need to connect to a
remote computer and/or change the default namespace. This step is
optional, however if omitted you will use the default scope which will be
your local machine and generally the root\cimv2 namespace.

2. Next if you are connecting to a remote machine you may need to supply
credentials in the way of a username and password. You assign these
details to the instance of the ManagementScope object.

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 23

3. Define a WQL Query, by either using the generic WQL language or by
using a more specific query class. When using the SelectQuery class you
can supply just the class name. You then define the WHERE clause
through the Condition property. You can also define which properties are
returned using the SelectedProperties property.

4. Assign the query to an instance of the ManagementObjectSearcher class.

5. Iterate through the collection of ManagementBaseObject classes
returned.

6. Access the properties of the returned class.

Using the more specific class may make your code easier to read as you need to set the

individual properties. However, I suspect the extra work will make you simply put the full

WQL query in. These classes are designed to reduce your knowledge of WMI (ie you

don’t need to know you use a SELECT statement), but they don’t really offer us too

much in the way of functionality.

As you can see it doesn’t take a great deal of code and it’s not any more difficult to do

the same for any other class. This is due to the object model being late bound as

mentioned earlier.

Event Queries

This would be the second most common query type after data queries. This query type has

enormous power and can sometimes be the only way to achieve a given task. The beauty

of WMI is that it’s remotable and that includes its events engine. When you register to

receive an event, you must first determine the type of event you want. WMI supports two

types of events: intrinsic events and extrinsic events.

Intrinsic events are events that occur in response to a change in the standard WMI

data model. Each intrinsic event class represents a specific type of change. Intrinsic events

occur when WMI or a provider creates, deletes, or modifies a namespace, class, or class

instance. WMI creates intrinsic events for objects stored within the CIM repository. In

contrast, a provider generates intrinsic events for dynamic classes; although WMI can

create an instance for a dynamic class if no provider is available. If the provider is unable

to provide its own intrinsic event then, WMI uses polling to detect the change which

incurs a higher overhead. The following table describes the system classes that WMI uses

to report intrinsic events.

Table 2-4 System Event Classes

System class Description

__ClassCreationEvent Fires when a class is created.

__ClassDeletionEvent Fires when a class is deleted.

__ClassModificationEvent Fires when a class is modified.

__InstanceCreationEvent Fires when a class instance is created.

__InstanceDeletionEvent Fires when an instance is deleted.

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 24

__InstanceModificationEvent Fires when an instance is modified.

__NamespaceCreationEvent Fires when a namespace is created.

__NamespaceDeletionEvent Fires when a namespace is deleted.

__NamespaceModificationEvent Fires when a namespace is modified.

An extrinsic event is a predefined occurrence that cannot be directly linked to changes

in the WMI data model. Therefore, WMI enables an event provider to define an event

class that best describes the event. An example of an extrinsic event would be one that

describes a computer switching to stand-by mode. A provider derives an extrinsic event

from the __ExtrinsicEvent system class, which is a subclass of the __Event system class.

In the next Chapter I will demonstrate how you can add your own extrinsic events to your

own classes.

.NET Classes

Taking this information into account, say you wanted to know if a new Event Log entry

was created. As you are concerned with the creation event of the Event Log, you would

want to attach to the __InstanceCreationEvent of the Win32_NTLogEvent class. The

following code shows how you would wire this up using the .NET frameworks classes:

Public Class WQL_Samples

 Shared Sub EventWatcher()

 ' Step 1 & 2: Have been ommitted for clarity, see previous examples

 ' Step 3 & 4: Define the Event Query

 Dim objEventWatcher As New ManagementEventWatcher _

 (New WqlEventQuery("SELECT * FROM __InstanceCreationEvent WHERE " & _

 "TargetInstance ISA 'Win32_NTLogEvent'"))

 ' Step 5: Define an instance (although shared methods can be used also)

 ' of the class that has the method to be called when event fires

 Dim objEventArrivedMethod As New WQL_Samples()

 ' Step 5: Attach the method from the instance to EventArrived

 AddHandler objEventWatcher.EventArrived, _

 AddressOf objEventArrivedMethod.Updated

 ' Step 6:Start watching for events

 objEventWatcher.Start()

 ' Just slow things down a bit and wait a bit.

 System.Threading.Thread.Sleep(2000)

 ' Create an Event Log Entry

 Dim objEventLog As New System.Diagnostics.EventLog("Application")

 objEventLog.Source = "WQL Sample"

 objEventLog.WriteEntry("Sample WQL Entry...")

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 25

 ' Wait for event to fire.

 System.Threading.Thread.Sleep(2000)

 ' Step 8: Stop waiting for events

 objEventWatcher.Stop() ' Stops waiting for events.

 End Sub

 ' This is the method that will be called when the event fires.

 Sub Updated(ByVal sender As Object, ByVal e As EventArrivedEventArgs)

 Dim objClassInstance As ManagementBaseObject

 ' Step 7: Access the details from the event

 objClassInstance = CType(e.NewEvent. _

 Properties("TargetInstance").Value, ManagementBaseObject)

 MessageBox.Show("The following entry was just added: " & _

 objClassInstance.Properties("LogFile").Value.ToString & ": " & _

 objClassInstance.Properties("Message").Value.ToString)

 End Sub

End Class

Figure 2-4. Event Query hierarchy

Figure 2-4 shows the hierarchy for event queries. When coding event queries you need

to follow these basic steps each time which are independent of the type of class you are

trying to access.

2. . Define the Management Scope, which is used if you need to
connect to a remote computer and/or change the default namespace. This
step is optional, however if omitted you will use the default scope which
will be your local machine and generally the root\cimv2 namespace.

7. . Next if you are connecting to a remote machine you may
need to supply credentials in the way of a username and password. You
assign these details to the instance of the ManagementScope object.

8. . Define a WQL Query, which includes the event and the
class. Note you can supply a full WQL query or use the many overloaded
methods to supply the query details.

9. . Assign the query to an instance of the
ManagementEventWatcher class.

10. . Attach the method to be called once the event fires to the
EventArrived method of the ManagementEventWatcher class instance.
This is done by passing the address of the method to be called using the
AddressOf operator.

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 26

11. . Wait for the event to fire by calling the Start method of the
ManagementEventWatcher class instance.

12. . Access the properties of the returned class via the
EventArrivedEventArgs when the event fires (assuming it ever does), in
the method that handles the event.

13. . Once you no longer want to receive notifications of events
then you call the Stop method of the ManagementEventWatcher class
instance.

Although there is more code here it’s not particularly difficult. The only area of

difficulty is where you hook up the method to be called when the event fires. .NET is

making use of delegates here and if you’re not too familiar with them search for

‘delegates’ in the VS.NET online help for more information.

Qualifiers

Qualifiers are additional information added to the schema to describe useful information

about the classes and its methods, parameters and properties. Each qualifier is a name

valued pair which can have varying data types such as string, integer, byte or Boolean. A

very common and useful qualifier is Key which tells us if a particular property of a class is

the key; its value if present is True or False. In this example, the qualifier would normally

only be present if the value were True. This means you can’t expect a particular qualifier

to be always present; you will need to test for its existence and then retrieve its value.

Sometimes a particular qualifier will not be a basic type such as a string or Boolean. In

some circumstances, it will be an array of basic types. In many cases there may be two

arrays qualifiers, one that specifies a system enumeration such as 1, 2, 3, 4, 5, 6... 20. The

other specifying a localized description of the enumeration such as FILE_READ_DATA

(file) or FILE_LIST_DIRECTORY (directory), FILE_WRITE_DATA (file) or

FILE_ADD_FILE (directory), FILE_APPEND_DATA (file) or

FILE_ADD_SUBDIRECTORY (directory). You can see how this example works by

specifying in the query tool to display both a detailed list and their qualifiers as shown in

Figure 2-5.

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 27

Figure 2-5. Query Tool Class Qualifiers

You will also notice that qualifiers describe other aspects of the property too, such as

the properties data type and description. The type of qualifiers and the number of them

will vary greatly between class types. Also it should be noted that many of the qualifiers

are not available when you have an instance of the class. The qualifiers can be dependant

on whether you are looking at the class description or its instance. Taking a look forward

to Figure 2-8 you can see that instance classes show qualifiers that are propagated to the

instance only.

Accessing Qualifier Data

Earlier when we created the query tool, I mentioned I’d cover how the code for accessing

qualifier data worked.

Private Function GetQualifierData(ByVal objQualifier As QualifierData) As String

 Dim strResult As String

 If TypeOf objQualifier.Value Is Array Then

 ' As there are numerous types of array types such as Uint8, string etc

 ' its easier (if not as efficient) to iterate through the collection

 ' coverting each element to its string representation

 Dim i As Integer

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 28

 Dim strbResult As System.Text.StringBuilder = _

 New System.Text.StringBuilder()

 ' Note by default the value property isn't an array. However, we know it

 ' is because we tested to see if the Value was of type Array.

 ' As each array type can be different we have to handle each type

 ' seperately as they won't cast to object. The following code is

 ' repetitive but required.

 Select Case TypeName(objQualifier.Value)

 Case "Byte()"

 Dim arrItems As Byte()

 arrItems = CType(objQualifier.Value, Byte())

 For i = 0 To arrItems.Length - 1

 strbResult.Append(arrItems(i).ToString)

 strbResult.Append(", ")

 Next

 Case "String()"

 Dim arrItems As String()

 arrItems = CType(objQualifier.Value, String())

 For i = 0 To arrItems.Length - 1

 strbResult.Append(arrItems(i).ToString)

 strbResult.Append(", ")

 Next

 Case "Nothing"

 ' There is no data to deal with

 strbResult.Append(", ") ' It will be removed later.

 Case Else

 strbResult.Append("Unknown Array type: " & _

 TypeName(objQualifier.Value) & vbCrLf & ", ")

 End Select

 strResult = strbResult.ToString

 ' remove the last comma before returning the string

 strResult = strResult.Substring(0, strResult.Length - 2)

 Else

 strResult = SafeValue(objQualifier.Value)

 End If

 Return strResult & vbCrLf

End Function

The previous code is very similar to that of the GetPropertyData function. However,

because the two classes we want to examine don’t inherit from a common class we have

to create two copies of virtually the same thing. You’ll note that checking if the value

property is an array is different in each routine as the QualifierData object doesn’t support

the IsArray property like the PropertyData object does.

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 29

In essence the code is designed to convert an array value type into a simple comma

separated string for easy viewing. Because the array can be of varying types we have to

code for each array type individually. I’ve made use of the string builder class as some

arrays can be fairly large and standard string concatenation in .Net is not very efficient.

Also as VB.NET doesn’t support unsigned types which are commonly used in WMI, each

value is converted to its string counterpart, which allows VB.NET to handle the value.

CIM Studio

Although the query tool we have built is good for running ad hoc queries, it can be a little

awkward to use for researching what is in the CIM. As part of the WMI SDK you get a

few tools one of which is CIM Studio. This web based utility is excellent for browsing and

searching the CIM meta data.

Figure 2-6. Query Tool Class Qualifiers

Figure 2-6 shows you what CIM Studio looks like where you can see that CIM Studio

displays all the classes in the left pane and class details in the right pane. You can access

all the properties, methods and associations of any class by switching between the views in

the right pane. If you double click on the icon to the left of the property name it will bring

up the qualifiers for that property too; an example is given in Figure 2-8.

A detailed discussion of how to use CIM Studio is outside the scope of this book,

however it is important that you know that it exists. There is a help file which comes with

the program which I suggest you have a look through to get the best out of the product. I

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 30

would suggest that this will be a very popular tool for those of you who start to use WMI

regularly.

Associations

As you’ll remember each piece of information that is stored in the CIM is exposed as

classes which are templates for class instances or objects. As with any object model,

objects don’t normally live in isolation, rather they are related to each other in some way.

For example each disk drive you have in your computer is related to many other parts of

the computer. For example the logical disk drive C:\ is related to parts of the operating

system such as disk quotas, partitions and directories. These are then related to other parts

of the system such as users through the security settings that they have. As you can see

almost every class within the CIM is related to another class in some way.

+ChangeSecurityPermissions()

+ChangeSecurityPermissionsEx()

+Compress()

+CompressEx()

+Delete()

+<..>()

+Caption : string

+Description : string

«key» +Name : string

+Compressed : bool

+Hidden : bool

+Drive : string

-<..>

«instance»

Win32_Directory

+Reset()

+SetPowerState()

«key» +DeviceID : string

+Description : string

+Size : ulong

+<..>

«instance»

Win32_DiskPartition

+DiskSpaceUsed : ulong

+Limit : ulong

«key» +QuotaVolume : Win32_LogicalDisk

+Status : uint

«key» +User : Win32_Account

+WarningLimit : ulong

«association»

Win32_DiskQuota

«key» +Antecedent : Win32_DiskPartition

«key» +Dependant : Win32_LogicalDisk

+EndingAddress : ulong

+StartingAddress : ulong

«association»

Win32_LogicalDiskToPartition

+Caption : string

+Description : string

+SettingID : string

«key» +VolumePath : string

+DefaultLimit : ulong

-<..>

«instance»

Win32_QuotaSetting

+Chkdisk()

+ExcludeFromAutochk()

+Reset()

+ScheduleAutoChk()

+SetPowerState()

«key» +DeviceID : string

+Name : string

+Caption : string

+Compressed : bool

+Size : ulong

+VolumeName : string

-<...>

«instance»

Win32_LogicalDisk

«key» +GroupComponent : Win32_LogicalDisk

«key» +PartComponent : Win32_Directory

«association»

Win32_LogicalDiskRootDirectory

«key» +Element : Win32_LogicalDisk

«key» +Setting : Win32_QuotaSetting

«association»

Win32_VolumeQuotaSetting

+Caption : string

+Description : string

«key» +Domain : string

+InstallDate : Date

+LocalAccount : bool

«key» +Name : string

+SID : string

+SIDType : ushort

+Satus : string

«instance»

Win32_Account

Figure 2-7. Sample Associations

WMI allows us to explore these relationships through associations which are the

intermediate classes that join other classes together. For example if you wanted to split a

logical disk into several partitions you would need three classes. An instance class which

describes the logical disk (LogicalDisk), an instance class to describe the partition

(DiskPartition) and an association class which related them together

(LogicalDiskToPartition). You can use CIM Studio to view these relationships, but

selecting the class you’re interested in, then selecting the associations tab in the right pane.

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 31

Using CIM Studio I was able to diagram the relationships for the Win32_LogicalDisk

class which is presented in Figure 2-7. The diagram clearly shows the association classes

that are related to the Win32_LogicalDisk class.

Note: There were many properties on several classes. The use of an ellipse

(<…>) indicates that some were removed to keep the class description brief.

WMI uses schema queries to allow us to explore these relationships using two

keywords ASSOCIATORS OF and REFERENCES OF; the details of each are explained

next.

ASSOCIATORS OF Statement

The ASSOCIATORS OF statement is used to retrieve the associated classes of a given

class instance not its associating classes. This means that for our class diagram the

associated classes are Win32_Account, Win32_DiskPartition, Win32_Directory and

Win32_QuotaSetting as shown on Figure 2-7.

The full syntax of the ASSOCIATORS OF statement is given below. Note that all

sections of the WHERE clause are optional and don’t rely on each other. The only part

that is mandatory is the first section which specifies the class instance. Take note to

include the braces ({…}) as they are part of the required syntax:

ASSOCIATORS OF {ClassInstance} WHERE

 AssocClass = AssocClassName

 ClassDefsOnly

 RequiredAssocQualifier = QualifierName

 RequiredQualifier = QualifierName

 ResultClass = ClassName

 ResultRole = PropertyName

 Role = PropertyName

ClassDefsOnly

Adding ClassDefsOnly to the WHERE class means that the result will only be the class

definitions not the instances themselves. This allows the result to return much faster as we

are not returning any instance data just the class definitions. To illustrate we will return the

classes associated with the Win32_LogicalDisk as represented in our class diagram:

QueryTool: ASSOCIATORS OF: ClassDefsOnly

ASSOCIATORS OF {Win32_LogicalDisk.DeviceID="C:"} WHERE ClassDefsOnly

Results (Summary):

\\INSPIRON8200\ROOT\cimv2:Win32_Account

\\INSPIRON8200\ROOT\CIMV2:Win32_Directory

\\INSPIRON8200\ROOT\CIMV2:Win32_ComputerSystem

\\INSPIRON8200\ROOT\CIMV2:Win32_QuotaSetting

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 32

\\INSPIRON8200\ROOT\CIMV2:Win32_DiskPartition

As you can see the result is the same as bottom level of our class diagram meaning that

the ASSOCIATORS OF keyword has returned the instance classes not the association

classes which can be a little confusing. You may notice that there’s an extra class

Win32_ComputerSystem this class is at a higher level, but it is still associated with a

logical disk. I didn’t want to model from that high up as there’s so many associated

classes. The following WQL shows what I mean; note you’ll need to change inspiron8200

to the name of your computer to run this on your system:

QueryTool: ASSOCIATORS OF: ComputerSystem – ClassDefsOnly

ASSOCIATORS OF {Win32_ComputerSystem.Name='inspiron8200'} WHERE ClassDefsOnly

Results (Summary):

\\INSPIRON8200\ROOT\cimv2:Win32_BIOS

\\INSPIRON8200\ROOT\cimv2:Win32_Process

\\INSPIRON8200\ROOT\cimv2:Win32_LoadOrderGroup

\\INSPIRON8200\ROOT\cimv2:Win32_LogicalProgramGroup

\\INSPIRON8200\ROOT\cimv2:Win32_Desktop

\\INSPIRON8200\ROOT\cimv2:Win32_BootConfiguration

\\INSPIRON8200\ROOT\cimv2:Win32_SystemDriver

\\INSPIRON8200\ROOT\cimv2:Win32_UserAccount

\\INSPIRON8200\ROOT\cimv2:Win32_TimeZone

\\INSPIRON8200\ROOT\cimv2:Win32_OperatingSystem

\\INSPIRON8200\ROOT\cimv2:Win32_LogicalMemoryConfiguration

\\INSPIRON8200\ROOT\cimv2:Win32_Service

\\INSPIRON8200\ROOT\cimv2:Win32_NTLogEvent

\\INSPIRON8200\ROOT\cimv2:Win32_Environment

\\INSPIRON8200\ROOT\cimv2:Win32_DMAChannel

\\INSPIRON8200\ROOT\cimv2:Win32_IRQResource

\\INSPIRON8200\ROOT\cimv2:Win32_DeviceMemoryAddress

\\INSPIRON8200\ROOT\cimv2:Win32_PortResource

\\INSPIRON8200\ROOT\cimv2:Win32_SoftwareElement

\\INSPIRON8200\ROOT\cimv2:Win32_Bus

\\INSPIRON8200\ROOT\cimv2:Win32_MotherboardDevice

\\INSPIRON8200\ROOT\cimv2:Win32_PnPEntity

\\INSPIRON8200\ROOT\cimv2:Win32_SoundDevice

\\INSPIRON8200\ROOT\cimv2:Win32_1394Controller

\\INSPIRON8200\ROOT\cimv2:Win32_Battery

\\INSPIRON8200\ROOT\cimv2:Win32_FloppyController

\\INSPIRON8200\ROOT\cimv2:Win32_IDEController

\\INSPIRON8200\ROOT\cimv2:Win32_NetworkAdapter

\\INSPIRON8200\ROOT\cimv2:Win32_PortableBattery

\\INSPIRON8200\ROOT\cimv2:Win32_POTSModem

\\INSPIRON8200\ROOT\cimv2:Win32_Printer

\\INSPIRON8200\ROOT\cimv2:Win32_Processor

\\INSPIRON8200\ROOT\cimv2:Win32_CDROMDrive

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 33

\\INSPIRON8200\ROOT\cimv2:Win32_DiskDrive

\\INSPIRON8200\ROOT\cimv2:Win32_DiskPartition

\\INSPIRON8200\ROOT\cimv2:Win32_Fan

\\INSPIRON8200\ROOT\cimv2:Win32_FloppyDrive

\\INSPIRON8200\ROOT\cimv2:Win32_Keyboard

\\INSPIRON8200\ROOT\cimv2:Win32_LogicalDisk

\\INSPIRON8200\ROOT\cimv2:Win32_MemoryArray

\\INSPIRON8200\ROOT\cimv2:Win32_MemoryDevice

\\INSPIRON8200\ROOT\cimv2:Win32_ParallelPort

\\INSPIRON8200\ROOT\cimv2:Win32_PCMCIAController

\\INSPIRON8200\ROOT\cimv2:Win32_PointingDevice

\\INSPIRON8200\ROOT\cimv2:Win32_SerialPort

\\INSPIRON8200\ROOT\cimv2:Win32_USBController

\\INSPIRON8200\ROOT\cimv2:Win32_USBHub

\\INSPIRON8200\ROOT\cimv2:Win32_CacheMemory

\\INSPIRON8200\ROOT\cimv2:Win32_DesktopMonitor

\\INSPIRON8200\ROOT\cimv2:Win32_TemperatureProbe

\\INSPIRON8200\ROOT\cimv2:Win32_VideoController

You’ll also notice that the Win32_LogicalDisk was one of the associations.

AssocClass

Using the AssocClass keyword allows us to restrict the result to the class instances that

are derived from the specified class. This is useful if you are only concerned with one type

of association class such as directory information for the root drive as contained in the

Win32_LogicalDiskRootDirectory association class:

QueryTool: ASSOCIATORS OF: AssocClass

ASSOCIATORS OF {Win32_LogicalDisk.DeviceID="C:"}

 WHERE AssocClass = Win32_LogicalDiskRootDirectory

Results (Summary):

\\INSPIRON8200\root\cimv2:Win32_Directory.Name="c:\\"

RequiredAssocQualifier

This keyword indicates that the returned instances must be associated with the source

class through an association class that includes the specified qualifier. This type of filtering

is used to eliminate broad ranges of associated classes unless the classes are associated

with the target through a particular set of tagged association classes. The following

example returns class instances if the association class includes a qualifier called

Association:

QueryTool: ASSOCIATORS OF: RequiredAssocQualifier

ASSOCIATORS OF {Win32_LogicalDisk.DeviceID='C:'}

 WHERE RequiredAssocQualifier = Association

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 34

Results (Summary):

' The following prefix was removed for clarity: \\INSPIRON8200\root\cimv2:

Win32_Directory.Name="c:\\"

Win32_SystemAccount.Domain="INSPIRON8200",Name="Administrators"

Win32_ComputerSystem.Name="INSPIRON8200"

Win32_QuotaSetting.VolumePath="C:\\"

Win32_DiskPartition.DeviceID="Disk #0, Partition #0"

Figure 2-8. Class Qualifiers

You can see what qualifiers are associated with a class by using CIM Studio and

selecting Object Qualifiers from the context menu. The result for

Win32_LogicalDiskRootDirectory is shown in Figure 2-8 which shows the Association

qualifier which was queried for.

RequiredQualifier

This keyword indicates that the returned classes associated with the source class must

include the specified qualifier. The RequiredQualifier keyword can be used to include

particular types of instances in the result set. The following example returns endpoint

instances that include a qualifier called Locale:

QueryTool: ASSOCIATORS OF: RequiredQualifier

ASSOCIATORS OF {Win32_LogicalDisk.DeviceID='C:'}

 WHERE RequiredQualifier = Locale

Results (Summary):

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 35

' The following prefix was removed for clarity: \\INSPIRON8200\root\cimv2:

Win32_Directory.Name="c:\\"

Win32_SystemAccount.Domain="INSPIRON8200",Name="Administrators"

Win32_ComputerSystem.Name="INSPIRON8200"

Win32_QuotaSetting.VolumePath="C:\\"

Win32_DiskPartition.DeviceID="Disk #0, Partition #0"

ResultClass

This keyword indicates that the returned classes associated with the source class must

belong to or be derived from the specified class. The following example returns class

instances that are derived from the CIM_Directory class:

QueryTool: ASSOCIATORS OF: ResultClass

ASSOCIATORS OF {Win32_LogicalDisk.DeviceID='C:'}

 WHERE ResultClass = Cim_Directory

Results (Summary):

\\INSPIRON8200\root\cimv2:Win32_Directory.Name="c:\\"

Note: The ClassDefsOnly and ResultClass keywords are mutually exclusive and

will cause an invalid query error if used together. Also complex queries cannot

use "And" or "Or" to separate keywords for ASSOCIATORS OF and

REFERENCES OF statements. The equal sign is also the only valid operator

that can be used with the keywords in these queries.

You can discover what a given class is derived from easily by using the CIM Studio.

Simply click the Array property of the _DERIVATION attribute of the class you’re

interested in. Figure 2-9 shows the classes that Win32_Directory is derived from.

Figure 2-9. Class Derivations

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 36

ResultRole

This keyword indicates that the returned classes participate in an association with the

source class where the source class plays a particular role. The role is defined by the

specified property, a reference property of type ref. For example, the Role keyword can be

used to retrieve all endpoints associated with a source object that have the

GroupComponent property, as the following query illustrates:

QueryTool: ASSOCIATORS OF: ResultRole

ASSOCIATORS OF {Win32_LogicalDisk.DeviceID='C:'}

 WHERE ResultRole = GroupComponent

Results (Summary):

\\INSPIRON8200\root\cimv2:Win32_ComputerSystem.Name="INSPIRON8200"

Role

This keyword indicates that the returned class instances participate in an association with

the source class where the source class plays a particular role. The role is defined by the

specified property, a reference property of type ref. For example, the Role keyword can be

used to retrieve all classes associated with a source class that have the GroupComponent

property:

QueryTool: ASSOCIATORS OF: Role

ASSOCIATORS OF {Win32_LogicalDisk.DeviceID='C:'} WHERE Role = GroupComponent

Results (Summary):

\\INSPIRON8200\root\cimv2:Win32_Directory.Name="c:\\"

.NET Classes

You now know the query syntax but how do you wire that up to the managed classes

within the .NET framework. The next example shows how you can reproduce this output:

Public Shared Sub AssociatorsOF()

 'This query requests all objects related to the 'C:' drive.

 Dim objWMIQuery As New RelatedObjectQuery("win32_logicaldisk='c:'")

 Dim objWMISearcher As New ManagementObjectSearcher(objWMIQuery)

 Dim objClass As ManagementObject

 ' Now iterate through each of the associations return by the query

 For Each objClass In objWMISearcher.Get()

 Debug.WriteLine(objClass.ToString())

 Next

End Sub

Again I am making use of the more specific class RelatedObjectQuery although you

could use the more generic ObjectQuery class if you wish. In the example, coding

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 37

ASSOCIATORS OF schema queries requires the following basic steps each time which is

independent of the type of class you are trying to access.

1. Identify the class instance you are interested being the ObjectPath, our
example makes use of the RelatedQueryObject for querying which builds
the correct WQL. If however if you wish to use the full WQL syntax you
can use either ObjectQuery or RelatedQueryObject.

2. Assign the query to an instance of the ManagementObjectSearcher class.

3. Iterate through the collection of ManagementBaseObject classes
returned.

4. Access the properties of the returned class.

REFERENCES OF Statement

Now that you have an understanding of the ASSOCIATORS OF statement it’s fairly easy

to explain the use of the REFERENCES OF statement. The main difference is that instead

of returning the class instances that are associated with a given class instance, it returns

the association classes instead.

The full syntax of the REFERENCES OF statement is given below. Note that all

sections of the WHERE clause are optional and don’t rely on each other. The only part

that is mandatory is the first section which specifies the object path. Take note to include

the braces ({…}) as they are part of the required syntax:

REFERENCES OF {ClassInstance} WHERE

 ClassDefsOnly

 RequiredQualifier = QualifierName

 ResultClass = ClassName

 Role = PropertyName

The keywords used for the REFERENCES OF statement match the meaning of their

ASSOCIATORS OF counterpart. The results however are obviously different given the

beginning statements are different. The following will show the results using the

REFERENCES OF statement. You can compare the results to those of the

ASSOCIATORS OF statement presented earlier.

ClassDefsOnly

Adding ClassDefsOnly to the WHERE class like the ASSOCIATORS OF statement

means that the result will only be the class definitions not the instances themselves. This

allows the result to return much faster as we are not returning any instance data just the

class definitions. To illustrate we will return the classes associated with the

Win32_LogicalDisk as represented in our class diagram:

QueryTool: REFERENCES OF: ClassDefsOnly

REFERENCES OF {Win32_LogicalDisk.DeviceID="C:"} WHERE ClassDefsOnly

Results (Summary):

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 38

\\INSPIRON8200\ROOT\cimv2:Win32_LogicalDiskRootDirectory

\\INSPIRON8200\ROOT\cimv2:Win32_DiskQuota

\\INSPIRON8200\ROOT\cimv2:Win32_SystemDevices

\\INSPIRON8200\ROOT\cimv2:Win32_VolumeQuotaSetting

\\INSPIRON8200\ROOT\cimv2:Win32_LogicalDiskToPartition

Notice now that the result is the association classes that are used to associate the

Win32_LogicalDisk with the associated classes such as Win32_Account,

Win32_DiskPartition, Win32_Directory and Win32_QuotaSetting. You can see how they

relate to the Win32_LogicalDisk by looking back at Figure 2-7.

RequiredQualifier

This keyword indicates that the returned classes associated with the source class must

include the specified qualifier. The RequiredQualifier keyword can be used to include

particular types of instances in the result set. The following example returns endpoint

instances that include a qualifier called Locale:

QueryTool: REFERENCES OF: RequiredQualifier

REFERENCES OF {Win32_LogicalDisk.DeviceID='C:'}

 WHERE RequiredQualifier = Locale

Results (Summary):

' The following prefix was removed for clarity: \\INSPIRON8200\root\cimv2:

Win32_DiskQuota.QuotaVolume="Win32_LogicalDisk.DeviceID=\"C:\"",User="Win32_Account.Dom

ain=\"INSPIRON8200\",Name=\"Administrators\""

Win32_LogicalDiskRootDirectory.GroupComponent="\\\\INSPIRON8200\\root\\CIMV2:Win32_Logica

lDisk.DeviceID=\"C:\"",PartComponent="\\\\INSPIRON8200\\root\\cimv2:Win32_Directory.Name=\"C:

\\\\\""

Win32_SystemDevices.GroupComponent="\\\\INSPIRON8200\\root\\cimv2:Win32_ComputerSystem

.Name=\"INSPIRON8200\"",PartComponent="\\\\INSPIRON8200\\root\\cimv2:Win32_LogicalDisk.De

viceID=\"C:\""

Win32_VolumeQuotaSetting.Element="\\\\INSPIRON8200\\root\\cimv2:Win32_LogicalDisk.DeviceID

=\"C:\"",Setting="\\\\INSPIRON8200\\root\\cimv2:Win32_QuotaSetting.VolumePath=\"C:\\\\\""

Win32_LogicalDiskToPartition.Antecedent="\\\\INSPIRON8200\\root\\cimv2:Win32_DiskPartition.De

viceID=\"Disk #0, Partition

#0\"",Dependent="\\\\INSPIRON8200\\root\\cimv2:Win32_LogicalDisk.DeviceID=\"C:\""

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 39

ResultClass

This keyword indicates that the returned classes associated with the source class must

belong to or be derived from the specified class. The following example returns class

instances that are derived from the Win32_LogicalDiskToPartition class:

QueryTool: REFERENCES OF: ResultClass

REFERENCES OF {Win32_LogicalDisk.DeviceID='C:'}

 WHERE ResultClass = Win32_LogicalDiskToPartition

Results (Summary):

\\INSPIRON8200\root\cimv2:Win32_LogicalDiskToPartition.Antecedent="\\\\INSPIRON8200\\root\\ci

mv2:Win32_DiskPartition.DeviceID=\"Disk #0, Partition

#0\"",Dependent="\\\\INSPIRON8200\\root\\cimv2:Win32_LogicalDisk.DeviceID=\"C:\""

Role

This keyword indicates that the returned class instances participate in an association with

the source class where the source class plays a particular role. The role is defined by the

specified property, a reference property of type ref. For example, the Role keyword can be

used to retrieve all classes associated with a source class that have the GroupComponent

property:

QueryTool: REFERENCES OF: Role

REFERENCES OF {Win32_LogicalDisk.DeviceID='C:'} WHERE Role = GroupComponent

Results (Summary):

Win32_LogicalDiskRootDirectory.GroupComponent="\\\\INSPIRON8200\\root\\CIMV2:Win32_Logica

lDisk.DeviceID=\"C:\"",PartComponent="\\\\INSPIRON8200\\root\\cimv2:Win32_Directory.Name=\"C:

\\\\\""

Summary

At the beginning of the Chapter I mentioned that WMI was Microsoft’s best kept secret. I

trust that having read this Chapter you can see why. WMI is a very powerful technology,

which if you let yourself think about its possibilities, might find its way into your next

enterprise development project.

We learned that there is an enormous amount of information that WMI has; which is

easily accessible using WQL, an SQL derivative. We also learned that we can use WMI

across the enterprise due to its remotable capability. It was also discovered that

subscribing to events allows us to be notified when an object is created, deleted or

modified.

The WMI story however isn’t over and the next Chapter will build on the knowledge

we have just learned. In the next Chapter we will look at the ability to create our own

WMI providers, allowing you to expose both an objects data and its events in only a few

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 40

lines of code. If you haven’t been convinced by the power of WMI yet, you will be by the

end of the next Chapter.

Resources:

WMI Managed Extensions for VS.NET 2002:

http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/WMISE/wmioriManagingWindowsManagementInstrumentationWMIDataEventsWithServerExplore

r.asp

WMI Managed Extensions for VS.NET 2003:

http://www.microsoft.com/downloads/details.aspx?FamilyID=62d91a63-1253-4ea6-8599-

68fb3ef77de1&DisplayLang=en

COM API for WMI:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wmisdk/wmi/com_api_for_wmi.asp

WMI SDK (a must have download!)

http://msdn.microsoft.com/downloads/sdks/wmi/default.asp

