

© Copyright 2007 Garry McGlennon

Chapter 3

WMI: Instrumentation

In the previous Chapter I covered how to make use of the existing support for WMI that

Windows provides. This proved very useful when you wanted to access data about a local

or remote computer. I also covered the powerful event features that WMI supports.

However, this is only half the story; you can also create your own providers that can be

queried against, just like any native provider supplied by Microsoft. Now take a moment

to think about what this means. Using WMI, you can now create objects on one computer

and then remotely control and monitor those objects. As you have seen there is a lot of

power within WMI to obtain data and register for changes using events. Now you can

apply that power to your own objects. As mentioned there are a number of ISVs already

providing WMI support, and you are encouraged to consult the documentation or ask the

supplier about their support for WMI.

Manipulating Class Instances

Before I explain how to add WMI support to your objects there are still a few things

about WMI which I haven’t covered. I’ve explained how you can retrieve instances and

return the data they provide. However, WMI also allows you to modify the data of the

instance you return.

In addition to allowing you to modify data, WMI also supports asynchronous

processing using delegates.

Modifying Instances

I’ve covered how you can expose your classes to WMI and make them accessible to any

WMI compliant application. However, there are times when you will want to modify

rather than just view this data. When you create your own WMI enabled objects you will

also be able to write or update the data exposed by your classes.

To modify data you only need to have an instance of the class which you want to

modify, set the write enabled properties and then call the Put method. This method also

allows you to execute the operation with the following overloaded options:

Function Put() As ManagementPath

Function Put(PutOptions) As ManagementPath

Sub Put(ManagementOperationObserver)

Sub Put(ManagementOperationObserver, PutOptions)

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 2

 * PutOptions: This object allows you to set options that determine how
updates will be performed, such as CreateOnly, UpdateOnly,
UpdateOrCreate (default).

 * ManagementOperationObserver: This allows you to execute your
updates asynchronously, by specifying a method to execute when the
operation finishes.

To demonstrate this let‟s assume you want to modify the volume name of drive C:.

First we need to locate the class instance which we want to modify, which is done with the

following WQL:

SELECT * FROM Win32_LogicalDisk where DeviceID='C:'

Next we need to change the VolumeName property of the class to the new name:

objDrive.Properties("VolumeName").Value = <new name>

Then once we have changed the relevant property or properties we need to save this

information back to the object. To do this we simply call the Put method:

objDrive.Put()

So if we put this all together as an example we get the following:

Shared Sub ModifyVolumeName()

 Dim objScope As New ManagementScope("\\.\root\cimv2")

 Dim objWMISearcher As New ManagementObjectSearcher(objScope, _

 New SelectQuery("SELECT * FROM Win32_LogicalDisk where DeviceID='C:'"))

 Dim objDrive As ManagementObject

 Try

 For Each objDrive In objWMISearcher.Get

 objDrive.Properties("VolumeName").Value = _

 InputBox("Enter New Name for Drive C:", "Change Caption")

 objDrive.Put()

 Next

 Catch ex As Exception

 MessageBox.Show(ex.Message)

 Finally

 End Try

End Sub

In this example I allow the user to choose the new name which is then applied. The

result is then applied to the property, which is then saved with the Put method. You will of

course need the required permissions on your computer to run this sample.

Deleting Instances

We have seen how easy it is to retrieve class instances and make use of them. However,

there will be times when you’d like to remove an instance too. To remove an instance, we

simply get the instance object and call the Delete method. The following line of code is all

that is required once you have obtained the instance of the class:

objWMIClass.Delete()

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 3

Once you call this method the instance is removed and cannot be restored so consider

carefully before deleting instances. There is no way to know if an instance can be deleted

or not, however it is reasonable to expect that if a class supports creation of instances, it

also supports their deletion.

Writing Data Asynchronously

In previous example where you changed the volume name of the local drive you knew that

the action would be done fairly quickly as it’s done locally. However, assume that the

class property you wish to change will take an unknown amount of time to execute and

you’d rather not have your users wait for the process to finish. In this case you can

execute the Put method asynchronously by proving a ManagementOperationObserver

class which defines the method that will be called when the process is complete. So

modifying the previous example we end up with the following:

Shared Sub ModifyVolumeNameAsync()

 Dim objScope As New ManagementScope("\\.\root\cimv2")

 Dim objWMISearcher As New ManagementObjectSearcher(objScope, _

 New SelectQuery("SELECT * FROM Win32_LogicalDisk where DeviceID='C:'"))

 Dim objDrive As ManagementObject

 Try

 Dim objObserver As New ManagementOperationObserver()

 AddHandler objObserver.Completed, _

 AddressOf WQL_Samples.ModifyVolumeNameAsyncComplete

 For Each objDrive In objWMISearcher.Get

 objDrive.Properties("VolumeName").Value = _

 InputBox("Enter New Name for Drive C:", "Change Caption")

 ' Here we tell the method how to handle the async operation

 objDrive.Put(objObserver)

 Next

 Catch ex As Exception

 MessageBox.Show(ex.Message)

 End Try

End Sub

Shared Sub ModifyVolumeNameAsyncComplete(ByVal sender As Object, _

 ByVal e As CompletedEventArgs)

 MessageBox.Show("Drive Volume update is complete.")

End Sub

The core difference here is that we pass a delegate object to the put method and have a

method ready to be notified when the process finishes. This example also shows that you

can use shared methods instead of instance methods for your delegates. How delegates

work is covered in more detail in the MSMQ Chapter that follows and in the online help.

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 4

Figure 3-1. Exposing Data

Reading Data Asynchronously

WMI also supports the asynchronous reading of data too. The process is a little different

from updating but does require the use of the ManagementOperationObserver class. You

have two main events which you can make use of:

 * ObjectReady: This fires anytime a full object has been received ready
for processing. This is ideal for processing data as it becomes available.

 * Completed: This fires when all the data has been received.

The following example demonstrates how to read data from the event log

asynchronously, and even gives the user the option to stop the reading at any time. This

gives a much better user experience as the user may not wish to see all 10,000 entries in

your event log.

This example makes use of the ObjectReady event as it‟s the most useful for

asynchronous processing; see Figure 3-1. Although you can use AddHandler to define the

events, I‟ve gone with the more VB way by using WithEvents. They are both acceptable

and C# developers would have to choose AddHandler as they have no other choice:

Public Class ReadDataAsync

 Inherits System.Windows.Forms.Form

 WithEvents m_objObserver As New ManagementOperationObserver()

 Dim m_blnProcess As Boolean = False

 Private Sub btnExecute_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles btnExecute.Click

 ' This is where all the good stuff is!

 Try ' Errors in your WQL are common so we will watch for that.

 ' Define where to run our WQL Query

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 5

 ' Set the class level variable to say we are currently processing.

 m_blnProcess = True

 ' Define the query to be run Async.

 dim objWMISearcher as ManagementObjectSearcher = _

 New ManagementObjectSearcher(Me.txtQuery.Text)

 Dim objWMIClass As ManagementBaseObject

 ' You can use this method below if you don‟t want to use WithEvents

 'AddHandler m_objObserver.ObjectReady, _

 ' AddressOf ReadDataAsync.ModifyUserNameAsyncComplete

 Me.lstResults.Items.Clear() ' Clear previous results

 ' Execute the query – results retrieved by the ObjectReady event

 objWMISearcher.Get(m_objObserver)

 Catch ex As Exception

 ' Opps we have an error

 MessageBox.Show("ERROR: " & ex.Message)

 End Try

 End Sub

 Private Sub m_objObserver_ObjectReady(ByVal sender As Object, _

 ByVal e As System.Management.ObjectReadyEventArgs) _

 Handles m_objObserver.ObjectReady

 ' Add the returned data to the listbox on the form.

 Me.lstResults.Items.Add(e.NewObject.ToString)

 ' This can lead to a tight loop as all the results come in.

 Application.DoEvents()

 ' Check if we should be continuing processing of the events

 If Not m_blnProcess Then

 ' Stop the processing of events by cancelling the operation

 CType(sender, ManagementOperationObserver).Cancel()

 End If

 ' Move the selected item to the last position so we can see it.

 Me.lstResults.SelectedIndex = Me.lstResults.Items.Count

 End Sub

 Private Sub btnCancel_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles btnCancel.Click

 ' Set the class level variable to False, this will be examined each time

 ' the ObjectReady event is fired, so we can stop processing at any time.

 m_blnProcess = False

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 6

 End Sub

End Class

The core differences between how you would receive data synchronously compared to

asynchronously is the inclusion of the ManagementOperationObserver class. When passed

as an argument of the Get method, it fires events as data is being collected. The only thing

you need to do is hook up to the events by using either WithEvents as I‟ve done in the

example or using AddHandler. Once the event fires you get a reference to the newly

created object via e.NewObject, which represents the WMI Class returned by the query.

I‟ve included a little extra code to allow you to stop processing by setting the

m_blnProcess variable to False.

Making use of the asynchronous features of WMI can allow you to build more

responsive applications, which don‟t require a great deal of extra effort. As an exercise

I‟ve left the Query Tool synchronous for you to upgrade to the asynchronous model.

Security

When instrumenting a provider in .NET, it uses a new WMI feature known as a decoupled

provider subsystem which enables embedding the provider into the application; allowing

for more efficient operation. This permits WMI to interact with the application directly

instead of indirectly through the program's API. Decoupling the provider from WMI also

puts the application in control of the provider lifespan, instead of WMI.

Tip: If you are running in a workgroup, you may need to override the default settings for

remote network access to allow remote calls to work. Navigate to Control

Panel>Administrative Tools>Local Security Policy. From here navigate to Local Policies>Security

Options. Then change the Network access: Sharing and security model for local accounts to the

classic option. This allows you to use a username and password to access the remote computer.

The guest account doesn’t have sufficient rights to run WMI queries.

Classic providers that are loaded and unloaded by WinMgmt and run in the controlled

host are allowed and actually encouraged to impersonate the calling client when retrieving

information for this client. In the case of a decoupled provider, it's hosted in an application

that can be run by any user, impersonation is not allowed and only identify-level

connection is supported. The provider always operates in the context of the user who is

running the application, and performs an access check for the identity of the calling client

before forwarding the management information requested. The decoupled provider also

provides in the registration mechanism a security descriptor to define the users who are

allowed to provide information for this application.

Providers load into the provider subsystem within the NetworkService security

account. This account is intended for services that have no need for extensive privileges

but have the need to communicate remotely with other systems. By using this account the

potential risk that a corrupted or compromised provider could take out the entire

computer (or domain, in the case of a domain controller) is eliminated. It also ensures that

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 7

no privileged information is exposed to a user in case the provider does not properly

impersonate the client's context.

.NET Classes

When executing queries in WMI, you can adjust the connection options on the

ManagementScope class. You can supply details of a remote computer as well as a

username, password and connection settings.

Dim objScope As ManagementScope

objscope = New ManagementScope("\\remotecomputer\namespace")

With objScope.Options

 .Username = "Fred"

 .Password = "Barny"

 .Impersonation = ImpersonationLevel.Impersonate

 .Authentication = AuthenticationLevel.Unchanged

End With

Having defined the scope, you then pass this object into the

ManagementObjectSearcher class. The important thing to understand is the connection

between ManagementScope and the ManagementObjectSearcher class.

Dim objWMISearcher As ManagementObjectSearcher

objWMISearcher = New ManagementObjectSearcher(objScope, objQuery)

Tables 3-1 and Table 3-2 detail the options available when passing authentication

details.

Table 3-1. ImpersonationLevel enumeration

Member name Description

Anonymous Anonymous COM impersonation level that hides the identity of the caller. Calls to

WMI may fail with this impersonation level.

Default Default impersonation.

Delegate Delegate-level COM impersonation level that allows objects to permit other objects to

use the credentials of the caller. This level, which will work with WMI calls but may

constitute an unnecessary security risk, is supported only under Windows 2000.

Identify Identify-level COM impersonation level that allows objects to query the credentials of

the caller. Calls to WMI may fail with this impersonation level.

Impersonate Impersonate-level COM impersonation level that allows objects to use the credentials

of the caller. This is the recommended impersonation level for WMI calls.

Table 3-2. AuthenticationLevel enumeration

Member name Description

Call Call-level COM authentication.

Connect Connect-level COM authentication.

Default The default COM authentication level. WMI uses the default Windows

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 8

Authentication setting.

None No COM authentication.

Packet Packet-level COM authentication.

PacketIntegrity Packet Integrity-level COM authentication.

PacketPrivacy Packet Privacy-level COM authentication.

Unchanged Authentication level should remain as it was before.

Adding WMI Support

Now that you know much of what there is to know about querying, modifying and

deleting WMI classes its time to build your own. The process of adding WMI support to

your own objects and applications is known as Instrumentation; making them easy to

diagnose and profile. This section starts by introducing you to what is required to

instrument an application. I will then demonstrate how you might use this in the real

world. Later Chapters will extend this to cover more specific topics such as performance

counters and scheduling.

Instrumenting Your Applications

When you add support for WMI to your own applications it is known as instrumentation;

which is the process of adding management events, performance counters, and trace

information to an application. This allows monitoring tools to track the current status and

performance characteristics of your application. You can use instrumentation to provide

the following support to your applications:

 * Performance analysis and runtime profiling.

 * Problem diagnosis.

 * Expose application data.

 * Application configuration.

There are a number of classes provided by .NET that aid in the instrumentation of our

applications. These classes help to abstract even further the underlying detail of WMI.

The classes provided in the System.Management.Instrumentation namespace reduce

the amount of work required to give your applications WMI support; they also help you to

generate WMI events. This namespace allows you to do the following:

 * Instrument an application.

 * Expose application (delegate-based) events as WMI events.

 * Create manageable objects.

 * Define and use relationships between manageable objects.

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 9

WMI uses an object-oriented schema which has many similarities with .NET metadata.

This makes it very intuitive for .NET programmers and makes the process of exposing

application objects easier to understand. This similarity also allows application objects to

be mapped directly to WMI objects, which makes instrumenting the application relatively

easy. You could make use of instrumentation to:

 * Send events from components within your application.

 * Provide objects that aid in application configuration.

 * Expose runtime data; for example, performance characteristics.

Providing this type of instrumentation within your application greatly assists problem

diagnosis and can be used to quickly alert operators to conditions that require immediate

attention. Automating responses to problem situations can also be developed which

consumers can subscribe to via the WMI event model. The use of performance metrics can

be used to locate bottlenecks within your application and diagnose problems associated

with your application.

.NET Classes

The .NET framework provides a number of classes and features that allow you to add

instrumentation to your applications with relative ease. Below are the main namespaces

and their role within instrumentation:

 * System.Management.Instrumentation: Provides classes and
attributes to help instrument .NET applications.

 * System.Diagnostics: Provides support for developing custom
performance counters. This will be covered in-depth in Chapter 8.

 * System.Management: Provides a set of managed-code classes through
which .NET applications can easily access and manipulate management
information. This has already been covered in the previous Chapter.

Figure 3-1 shows how these classes relate to the overall architecture. Although not

shown in the figure the System.Management.Instrumentation namespace is used to

provide both data and to publish events to the CIMOM. This namespace handles all the

hard work for us and as you will see next, makes the process of adding WMI support

almost trivial.

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 10

Figure 3-1. WMI Architecture

Exposing Data

One of the powerful features that the .NET WMI classes provide is the ability to expose

your own objects data. Suppose that you have a web application that has an object for

each currently logged on user. Now, assume you want to know who is currently logged

on. To do this you could write yourself a web page which makes use of the object

instances on the server. You may also code into your objects some type of remoting,

which you could then program against. These options will work however they do require a

bit of extra work; especially if the administrator then asks to be able to apply criteria.

Another alternative would be to make your objects WMI enabled and expose the class

instances through WMI. By adding a few lines of code to your classes you are able to

expose them to any WMI compliant application, including the query tool we built in the

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 11

previous Chapter. Providing this level of functionality previously, that is pre .NET was

complicated and required C++ to do. Now with the advent of .NET you can provide this

level of functionality to your objects with only a few lines of code, which are even easy to

understand!

To do this, you add to your .NET class the InstrumentionClass attribute thereby

identifying it as a managed WMI class alternatively you can inherit from the Instance class

found in the System.Management.Instrumentation namespace. This then automatically

generates the WMI schema associated with your managed code class. Instances of the

class are exposed as WMI instances with all of the property values mapped, even

references between objects of the class and objects of other classes in the application are

mapped to WMI associations (which are relationships between management objects

defined in schema).

The following example demonstrates our scenario. The code is kept as simple as

possible so you can understand the WMI features being used:

Want to highlight the WMI specific areas in bold or similar

Option Strict On

' 1 & 2. Define your references

Imports System.Management

Imports System.Management.Instrumentation

' 3. Define the namespace for your objects

<Assembly: Instrumented("root\Samples")>

' This class is self contained and is used to automatically install all the

' WMI Schema data into the CIM. You must however use the InstallUtil.exe

' for this class to run.

' 4. Define the code for the Installer class: Simple copy and paste

<System.ComponentModel.RunInstaller(True)> _

Public Class SalesInstaller

 Inherits DefaultManagementProjectInstaller

End Class

' This is the main class which is used to log users onto the system.

Public Class LoggonUsers

' 5. Inherit from the base class

 Inherits Instance

 Dim m_colUsers As New ArrayList()

 Sub New()

 ' This line registers the current instance with WMI, so its vital!

 ' Also it should be the LAST line when initialising your object.

 ' 6. Publish instance to WMI

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 12

 MyBase.Published = True

 End Sub

 Public Sub Logon(ByVal Username As String)

 m_colUsers.Add(New User(Username))

 Dim objNewUserEventHandler As New NewUserEventHandler()

 objNewUserEventHandler.Username = Username

 objNewUserEventHandler.Fire()

 End Sub

 Public ReadOnly Property Count() As Integer

 Get

 Return m_colUsers.Count

 End Get

 End Property

 '<IgnoreMember()> _

 Public ReadOnly Property Items() As Object

 Get

 Return m_colUsers

 End Get

 End Property

End Class

' This class is only using Attributes to mark it as

' a WMI managed class. Allowing it to inherit from

' another class if required.

' 5. Use attributes to make use of the instrumentation class

<InstrumentationClass(InstrumentationType.Instance)> _

Public Class User

 Private m_strUsername As String

 Private m_dtmLoggedInAt As DateTime

 Sub New()

 Me.New("") ' Supply default user of Blank

 End Sub

 Sub New(ByVal Username As String)

 m_dtmLoggedInAt = DateTime.Now()

 Me.Username = Username

 ' This line registers the current instance with WMI, so its vital!

 ' Also it should be the LAST line when initialising your object.

 ' Note: this uses a different technique to the LoggonUsers object.

 ' 6. Publish instance to WMI

 System.Management.Instrumentation.Instrumentation.Publish(Me)

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 13

 End Sub

 Public Property Username() As String

 Get

 Return m_strUsername

 End Get

 Set(ByVal Value As String)

 m_strUsername = Value

 End Set

 End Property

 ' This property is dynamic and will change depending on the

 ' amount of time the user has been logged in.

 ReadOnly Property MinutesLoggedIn() As Long

 Get

 Return DateTime.Now.Subtract(m_dtmLoggedInAt).Minutes

 End Get

 End Property

End Class

This example uses two objects one to hold the collection of individual users

(LoggonUsers) and the other the actual individual user (User) object. You can associate a

user as being logged on with the following code:

m_objUsers.Logon(Me.txtUsername.Text)

Notice that I use a module level variable m_objUsers when I call the Logon method of

the LoggonUsers class. This is because you need to keep a reference to any of the instance

objects you create, this is important because WMI is only a layer onto of your objects. If

your object instances go out of scope or are destroyed then the WMI layer will not be able

to expose them as they will not exist. This makes sense; how can WMI expose instances

of objects that don‟t exist. To that extent once you close your application down WMI

looses the references to the objects you‟ve created.

Now if we examine the code it demonstrates that the following steps are required to

expose your data using WMI:

1. Add a reference to System.Configuration.Install. This is required for the
DefaultManagementProjectInstaller class which registers your objects with
WMI.

2. Add a reference to System.Management. This is required for all the
instrumentation and WMI classes.

3. Define the namespace where you want your objects to reside. If you don‟t
supply this, they will be put into root\Default by default:

<Assembly: Instrumented("root\Samples")>

4. To ensure that your objects can be installed into the CIM or WMI you
must include an installer class. The good news is you only have to inherit
from a base class which contains all the necessary code:

<System.ComponentModel.RunInstaller(True)> _

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 14

Public Class SalesInstaller

Inherits DefaultManagementProjectInstaller

End Class

5. Now to enable WMI support; you have two choices. You can either
inherit from the base class Instance or apply attributes which will do the
same thing; if you have already inherited from another class:

' Inheriting from System.Management.Instrumentation.Instance

Public Class LoggonUsers

Inherits Instance

…

End Class

' Using Attributes serves the same purpose as inheriting from Instance

<InstrumentationClass(InstrumentationType.Instance)> _

Public Class User

…

End Class

6. The only thing left to do now is to inform WMI when an instance of your
object is ready to be published, and therefore exposed by WMI. How you
do this depends on how you enabled WMI support as shown below:

' When inheriting from System.Management.Instrumentation.Instance

Sub New()

…

MyBase.Published = True

End Sub

' When using Attributes

Sub New()

…

System.Management.Instrumentation.Instrumentation.Publish(Me)

End Sub

7. Although that covers everything you need to do with the code itself there
is one last action that needs to be done. Firstly, build your solution to
generate an exe or dll. Next run the following command line utility
against it; you may need to use the .NET command prompt otherwise the
file may not be found in your DOS path.

installutil <assembly dll or exe>

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 15

Figure 3-3. Exposing Data

Once you have completed all the above steps you are now ready to start creating

instances of your objects. The sample demonstrates this by building a simple GUI that

registers a user by calling the Logon method of the class we just exposed to WMI. You

will find this example on the main form under the WMI Provider Examples, where you can

select Add New Users. This will bring up the dialog as shown in Figure 3-3. Once you

have created a few users, you can then use the query tool to start querying the objects

you‟ve added which will now be available through WMI.

Note: As of version 1.0 of the framework the instrumentation classes won’t expose

the methods of your classes. It’s hoped that this will be introduced in a later version of

the framework.

Looking at Figure 3-3, you can see that I have a total of 7 users logged on which I

added using the form. Now assume I‟m an administrator who needs to know how mnay

users have logged onto the system in the last minute. Our original code didn‟t provide any

functionality to return this information. However, using WQL and WMI we can run a

simple query against our objects to gain this information. The following query was used to

return back a total of 3 users out of the 7; results of which can be seen in Figure 3-3.

SELECT * FROM User Where MinutesLoggedIn = 0

This simple query demonstrates the power that was given to our objects for free. It

only required a few extra lines of code to make them WMI enabled. If should be noted

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 16

that if our application was installed on a remote computer and we had the necessary access

rights, we could query it just as easily without having to install any extra software. Next

we will add another exciting aspect of WMI to our objects, events.

Exposing Events

Events are probably one of the most exciting aspects of WMI in that it allows you to

notify consumers of your objects when a specific condition changes or of some other

event. This notification will also work across the enterprise thanks to the built in remoting

capability of WMI. You use similar techniques for exposing events as you do to expose

object data.

Expanding upon the previous example, I will add an event that will fire anytime a user

logs on. This event can then be monitored in the same way as was discussed previously in

the Event Queries topic in the previous Chapter.

The following code only shows the core changes from the previous example; I will go

over the differences in detail afterwards:

' This is an Event Class used to fire a custom event that

' will be exposed by WMI.

Public Class NewUserEventHandler

 ' 5. Inherit from BaseEvent for your custom events

 Inherits BaseEvent

 Public Username As String

End Class

Public Class LoggonUsers

 …

 Public Sub Logon(ByVal Username As String)

 m_colUsers.Add(New User(Username))

 Dim objNewUserEventHandler As New NewUserEventHandler()

 objNewUserEventHandler.Username = Username

 ' 6. Inform WMI that the event has fired

 objNewUserEventHandler.Fire()

 End Sub

 …

End Class

Now looking at the code it demonstrates the following steps required to expose an

event using WMI:

Steps 1 to 4 of exposing data are still required when exposing events.

5. Next we have two options which are very similar to those when exposing
data. You can either inherit from the base class BaseEvent or apply
attributes which will do the same thing; if you have already inherited from
another class:

' Inheriting from System.Management.Instrumentation.BaseEvent

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 17

Public Class NewUserEventHandler

Inherits BaseEvent

…

End Class

' Using Attributes serves the same purpose as inheriting from BaseEvent

<InstrumentationClass(InstrumentationType.Event)> _

Public Class NewUserEventHandler

…

End Class

6. Now all you need to do is fire the event at the appropriate time, by
creating an instance of the event object. You can then either call its Fire
method if you‟ve inherited from EventBase or use the shared Fire method
of the Instrumentation class by passing the event object as a parameter if
you used attributes.

' When inheriting from System.Management.Instrumentation.BaseEvent

Dim objNewUserEventHandler As New NewUserEventHandler()

objNewUserEventHandler.Username = Username

objNewUserEventHandler.Fire()

' When using Attributes

Dim objNewUserEvent As New NewUserEventHandler()

objNewUserEvent.Username = Username

System.Management.Instrumentation.Instrumentation.Fire(objNewUserEvent)

7. Although that covers everything you need to do with the code itself there
is one last action that needs to be done. Firstly, build your solution to
generate an exe or dll. Next run the following command line utility
against it.

installutil <assembly dll or exe>

I will cover how you can monitor these custom events from within VS.NET in the

next section. Although I‟ve mentioned this a few times, it‟s worth reiterating that this new

event can be used remotely without the need to write stubs or proxies. If you allow

yourself to think about the possibilities this brings you may rethink some of your

architectures.

WMI Server Explorer Extensions

Microsoft has been working on extensions for Server Explorer to make it easier to use

WMI resources. At the time of writing they have a Beta 2 of the extensions for download

to work with VS.NET 2002 and have just released an RTM version for VS.NET 2003.

You can see from Figure 3-4 what it looks like when installed.

As you can see there are a number of providers available similar to the ones mentioned

earlier. You can also see how easy it is to identify parts of the system simply by navigating

through the tree. Click on a class to see the properties that relate to that class in the

properties window.

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 18

Figure 3-4. WMI Server Explorer Extensions

Although there is a host of information available, as I‟ve mentioned earlier this is only

the tip of the iceberg and the WMI extensions allow you to see the whole iceberg if you

want. This includes your own custom providers like the one we just built. You can add

extra WMI classes by using the Add Classes context menu as shown in Figure 3-4. This

will bring up the Add Classes dialog which allows you to browse the available WMI

classes. Given that few people are very familiar with the WMI namespace structure, the

Add Classes dialog provides a very handy search feature. Let‟s take as an example you

wanted to know the details of the batteries on your laptop. Typing the keyword „batteries‟

returns the Win32_Battery class within the root\cimv2 namespace as shown in Figure 3-5.

If you don‟t find what you want on the first find, pressing the find button again will

continue the search through all available namespaces.

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 19

Figure 3-5. Searching WMI Namespaces

Although not shown in Figure 3-5, there are many other namespaces other than

root\cimv2 and when you first open the Add Classes dialog you‟ll see all the available

namespaces. If you download the WMI SDK you will also get a number of tools that

come with WMI such as an object browser. You may find these useful when trying to find

particular class resources. However, given that the WMI extensions are integrated into

VS.NET and the searching is easier, my preference is to use VS.NET.

Once you have added a class to Server Explorer, you will be able to see its properties

in the Property Browser and expand its nodes using Server Explorer. When you expand an

object node you can reveal other management objects that are semantically related to that

one. For example by expanding a process node you will be able to see which DLLs have

been loaded by that process.

Strongly Typed Classes

One of the problems with the WMI object model that Microsoft has tried to alleviate with

WMI extensions is the lack of early binding. As mentioned before WMI whether you’re

using the COM or System.Management class versions all suffer from late binding. This

means that object properties are accessed through a properties collection, and its methods

are accessed through a methods collection with all values being returned as

System.Object. Although this is good for generic management applications it does prove

problematic for developers by not having any type checking and requires more supporting

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 20

documentation. With WMI extensions you have a new feature which will create an early

bound wrapper class for any resource you try to use. That is instead of having to

remember all the late bound properties for a class you will have a strongly typed managed

class with the relevant properties and methods. This then allows you to take advantage of

IntelliSense and early binding and so reducing problematic code.

So the code that would have been written to retrieve the free disk space available on a

disk through a late-bound object (of type ManagementObject) in VB.NET would be like

this which can be found in the Server Explorer Extensions section of the samples.

Shared Sub LateBound()

 Dim objWMISearcher As New ManagementObjectSearcher_

("SELECT * FROM Win32_LogicalDisk WHERE DeviceID='C:'")

 Dim objDrive As ManagementObject

 For Each objDrive In objWMISearcher.Get

 MsgBox("You have :" & objDrive.Properties("FreeSpace").Value. _

ToString & " bytes free.")

 Next

End Sub

Now if you contrast this to a strongly typed version then you could write the code to

be more like this:

Shared Sub EarlyBound()

 Dim objLogicalDisk As New ROOT.CIMV2.LogicalDisk("C:")

 MsgBox("You have :" & objLogicalDisk.FreeSpace.ToString & _

" bytes free.")

End Sub

The early bound version is obviously easier to read and would require little

documentation to support it, as it‟s very intuitive. The WMI extensions provide an easy

method for creating these strongly typed wrappers by dragging a node onto a form or a

component in design mode. This action generates a wrapper which is added to your

project. A strongly typed data field is then added to your form which is then bound to the

specific WMI object that you had selected for the drag and drop operation.

Tip: The code that generates the strongly typed class is actually part of the Framework. You

can call the method GetStronglyTypedClassCode on the System.Management.ManagementClass

class. This will allow you to generate the class code for VB.NET, C# or Jscript depending on

your parameters.

 In the example, you select the logical disk node from Server Explorer and drop it onto

your form; then a file named Win32_LogicalDisk.vb, which contains the definition of the

wrapper class, is added to your project. The resulting code for the LogicalDisk class

works out at almost 2,000 lines of code! In addition to this, the LogicalDisk1 field is

added to your component, then instantiated and bound to a specific process inside the

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 21

InitializeComponent method. If however, you didn‟t want to create the wrapper with a

GUI interface i.e. you wanted to write a console application. Then you can still create the

wrapper by using the Generate Managed Class context menu of the class you‟re interested

in see Figure 3-6. Then you can simply create the object like any other, which is what I

have done for the “WMI Server Explorer Extensions” examples. From a maintenance

viewpoint the strongly typed version wins hands down, although it can add a little code

bloat.

Figure 3-6. Building a WMI Query

Management Events

The WMI extensions also provide access to the events that WMI provide called

management events. You can access this from the Management Events node in Server

Explorer. Events can be quite useful in a variety of development scenarios. You can

monitor for specific system changes in distributed applications, be notified when specified

thresholds are crossed, and view the events that your instrumented application fires, or

test a WMI event provider you are developing. The really useful part of this is that once

you register to listen for an event the event results are displayed within Server Explorer,

this means you don’t actually need to code anything to test your custom events.

By default the Management Events node doesn‟t have any children. You can add an

event by selecting the Add Event Query from the context menu.

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 22

Building Queries

You can use the Management Events feature of Server Explorer for several purposes:

 * Test event handlers in custom providers

 * Monitor an existing event handler in a WMI class

You can create a query that will always notify you of an event by using the Managed

Events node in Server Explorer. Selecting the context menu Add Event Query, displays

the dialog in Figure 3-7.

Figure 3-7. Building a WMI Query

If you want to be notified of a system or intrinsic event select the Data Operation

option for the event type. However given that you‟ve created your own custom provider

which has a custom event, which is an extrinsic event type we will select custom. Once

you change the event type to custom the dialog will fill with all the possible extrinsic

events for all the classes. Navigating to your custom class under the root\samples

namespace, shows all the events available for that namespace. You‟ll notice that the event

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 23

NewUserEventHandler is also there, which is the one we will register. By selecting the

event you‟re interested in and then clicking OK, you have setup Server Explorer to

respond to that event. The event query you have created using this UI will appear as a

child node under Management Events and will start listening for the appropriate events.

You can test this by running the Add New Users sample.

Figure 3-8. Receiving event nofifications in Server Explorer

It is important to note that the query builder UI is somewhat limited and cannot

produce some valid WQL event queries (for example, it assumes that the query conditions

are always simply constructed using the logical AND). If you need to create more

sophisticated query expressions using a logical OR or parentheses, you can always modify

the query string by changing the query property of the event query node in the Property

Browser window. This will stop the current event subscription and start a new one.

 Once an event matching your query criteria arrives, it will be printed to the output

window in Visual.Studio.NET, and added to the event node (see Figure 3-8). You need to

select Refresh from the event node's context menu to see the event as a child to the event

node. You can stop and start event subscriptions from the context menu of the event

node. You can also clear out the old event nodes this way.

Receiving Event Notifications

Now that we have added an event query to Server Explorer and have tested that it works,

we can take this one step further. As with anything that is available in Server Explorer,

you can drag and drop the event query you have created and drop it onto a form. Doing

this adds an instance of the System.Management.ManagementEventWatcher class to your

component and sets it to the query that you built. During my testing however it appears

that it doesn’t work as advertised (remember this is a Beta); as it seems to use the default

namespace instead of the one you’ve defined. This however is a small inconvenience; drop

the query onto a form; name it wmiNewUserEvent; then apply the following code to get it

all working.

' Initialize the object

Me.wmiNewUserEvent.Scope = New Management.ManagementScope("\\.\root\Samples")

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 24

Me.wmiNewUserEvent.Start()

' Define the method that will accept the event

Private Sub OnNewUser(ByVal sender As Object, ByVal e As _

 System.Management.EventArrivedEventArgs) Handles _

 wmiNewUserEvent.EventArrived

 MessageBox.Show("The following user just logged in: " & _

 e.NewEvent.Properties("Username").Value.ToString)

End Sub

This code firstly initializes the instance of the ManagementEventWatcher class by

specifying the correct management scope; which is not set after the drag and drop. Next

we tie the EventArrived event of the ManagementEventWatcher instance to the method

which will be executed; I‟ve used the Handles keyword, however C# programmers would

have to use an AddHandler statement instead. Now when a new user is added, you will

see a dialog box alerting you to the fact a new user has logged on.

Summary

This Chapter built on the knowledge we gained in the previous Chapter, and we learned

that WMI is not only powerful out of the box, but can be made more powerful by using

instrumentation. The ability to make our applications part of the WMI system allows us to

develop sophisticated applications quickly and easily. We can extend our applications so

that WMI tools can query our applications data and even register for events that our

application has.

Although mentioned a few times, it‟s worth reiterating that Microsoft is not the only

supplier of WMI providers. This could make using third party products easier, especially if

they don‟t provide a decent event model in their API.

Resources:

WMI Managed Extensions for VS.NET 2003:

http://www.microsoft.com/downloads/details.aspx?FamilyID=62d91a63-1253-4ea6-8599-

68fb3ef77de1&DisplayLang=en

COM API for WMI:

http://msdn2.microsoft.com/en-us/library/Aa389276.aspx

WMI SDK (a must have download!)

http://msdn.microsoft.com/downloads/sdks/wmi/default.asp

Update: http://www.microsoft.com/downloads/details.aspx?FamilyID=c2b1e300-f358-4523-b479-

f53d234cdccf&DisplayLang=en (seems the original link no longer works and they have bundled it

into the main SDK)

