

© Copyright 2007 Garry McGlennon

Chapter 5

Message Queues II

In the previous Chapter I covered the basic concepts of what message queues are and how

to send both simple and complex messages. In this Chapter I will continue the discussion

with the more advanced topics of transactions including integrating COM+ for distributed

transaction support. The next important issue that will be covered is what happens after

you send the message? Like in the analogy of sending a letter, you can never be sure if the

recipient has read the letter or not. The same issues are present with electronic messaging

and I’ll discuss the techniques available to ensure you do know the message was read.

As this Chapter is really an extension of the previous discussion, you’ll find that the

examples continue from where the previous Chapter left off. This also means that

technically there is no sample code for this Chapter as all the samples you see in this

Chapter will be part of the samples for the previous Chapter.

Using Transactions

The concept of a transaction is where you execute a multi-step process such that either all

steps succeed or none of them succeed. Most database texts will describe a transaction as

an atomic operation where it meets the ACID test (Atomicity, Consistency, Isolation and

Durability). Should a process fail, then that process and any previous processes within the

transaction should revert to their original state prior to the transaction (rolled back). For a

more technical discussion on the ACID test search for ACID in the online help.

Now that we have an idea of what a transaction is, how do they relate to MQ’s?

MSMQ supports transactions in two ways:

 * Internal Transaction: by allowing multiple messages to be sent or
received as part of a transaction

 * External Transactions: by participating in Distributed Transaction
Coordinator (DTC) transactions.

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 2

Figure 5-1. – Creating a Queue

The difference between the two types will be covered later in the Chapter, but before

we can use a transactional MQ, we need to set the queue up to be transactional. To create

a transactional queue you simply repeat the steps that you did to create a non-transactional

queue but this time tick the transactional check box. To recap, using the Server Explorer

window click on Private Queues, then right click and choose create queue as in Figure 5-

1. Type in the name of the queue you want, which in this case is Transactional, and then

tick the transactional check box, then click OK (see Figure 5-2).

Figure 5-2. - Creating a Transactional Queue

Now that we have created our new transactional MQ, it’s important to know if the

queue we are using supports transactions otherwise we may try sending a message in a

transaction when the queue doesn’t support it, which will result in a

MessageQueueException. The reverse is also true, in that if you try to receive or send

messages to a transactional queue without using transactions you will also get an

exception. So it is important to check the queue first if you don’t know if the queue is

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 3

transactional. To do this check is very easy, and only requires that you have an instance of

the MessageQueue object and test the following Boolean property.

objMessageQueue.Transactional()

When you send or receive a message you have the option of specifying a transaction

type for the send or receive; Table 5-1 details the options available to you.

Table 5-1 Message Queue Transaction Types

Enumeration Description

Automatic A transaction type used for Microsoft Transaction Server (MTS) or COM+ 1.0

Services. If there is already an MTS transaction context, it will be used when sending

or receiving the message. This is the type used when doing heterogeneous transactions.

None Operation will not be transactional.

Single A transaction type used for single internal transactions.

If you are going to use the simple version of the Send method for example in a

transaction (i.e. not using a Message object), then you must tell the Send method that you

want to use transactions. To do this you use the following line of code.

objMessageQueue.Send(<message txt>, <label>,

MessageQueueTransactionType.Single)

Internal Transactions

As mentioned MSMQ supports two types of transactions, the easiest to use is the internal

type. This allows you to send and receive several messages and have them rollback should

an error occur during the receipt of any of the messages. This allows you to execute

multiple messages (both sending a receiving) against one or more queues, wrapped up in a

transaction so that you can guarantee that either all or none of the messages will be

received. The transactional support in MSMQ is limited to MSMQ actions however, if

you want to include external resources such as databases, then you’ll have to use the

external support of MSMQ.

Example 5 – Sending a Transactional Message

To send a message using a transaction you must first create a transaction object using the

System.Messaging.MessageQueueTransaction class. After you have created the

transaction object you then need to supply it when ever you send a message. Example5a is

exactly the same as Example2 with the following code added.

Dim objTrans As MessageQueueTransaction

objTrans = New MessageQueueTransaction()

' Send message within a transaction

objTrans.Begin()

objMessageQueue.Send(objMessage, objTrans)

objTrans.Commit()

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 4

This code uses the MessageQueueTransaction class which has several methods which

are of interest. Table 5-2 describes the methods and their meaning which can be compared

to their use in the code samples.

Table 5-2 MessageQueueTransaction Methods

Member Name Description

Abort Allows you to programmatically abort a transaction which is currently pending.

This results in the transaction being rolled back to its original state and the

transaction stopped.

Begin As the name implies, begins a new internal transaction.

Commit Used to signify that the transaction has completed successfully and that the data

should be saved. Note that if the transaction is nested within another then it will

only be committed if all transactions are committed.

The example below is taken from Example5b, which shows the sending of two

messages. The second message will cause an exception to occur due to the Path property

being set to an invalid path. You’ll notice that you won’t see the first message appear on

the queue due to the first one being automatically rolled back. However, if you remove the

highlighted lines from this example you get Example5a, which only sends one message

which should succeed. You should then see the message appear in the Transactional MQ.

Try

 objMessageQueue = New MessageQueue(Constants.MQ.LocalTransQueue)

 ' Create a transaction object to be used on all sends

 objTrans = New MessageQueueTransaction()

 ' Send message within a transaction

 objTrans.Begin()

 objMessageQueue.Send(objMessage, objTrans)

 ' Cause an error here, within a transaction

 objMessageQueue.Path = "xxxx"

 objMessageQueue.Send(objMessage, objTrans)

 objTrans.Commit()

Catch ex As Exception

 ' An error occured so we need to rollback any trans if we started one

 If objTrans.Status = MessageQueueTransactionStatus.Pending Then

 objTrans.Abort()

 End If

 Debug.WriteLine(ex.Message)

 Debug.WriteLine(ex.StackTrace)

Finally

 objMessageQueue.Close()

End Try

As you can see, you need to include good error handling when dealing with

transactions so you can abort any that fail. When we do our error handling, we should

always check that a transaction is currently active, otherwise it will throw an exception.

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 5

To do this we make use of the Status property of the MessageQueueTransaction class

which returns a MessageQueueTransactionStatus enumeration type; see Table 5-3.

Table 5-3 MessageQueueTransactionStatus Enum

Member name Description

Aborted The transaction has been aborted which may have been the result of calling the Abort

method.

Committed The transaction has been committed which may have been the result of calling the

Commit method.

Initialized The transaction has been initialized; although it hasn’t been started as yet. As the

transaction hasn’t started yet, you can’t pass it to a method that uses it as its not

ready.

Pending The transaction has been started and is currently active. At this stage you can use

either the Abort or Commit methods to complete the transaction.

Finally you should always ensure that the MQ is closed at the end of the procedure.

This is best done in the Finally block as this is guaranteed to always be called regardless of

whether an error occurred or not.

External Transactions

We have learned how to use transactions by combining several messages within the same

transaction. This can be useful, however it is somewhat limiting, as the ‘real’ work is

usually done by an external process such as a class updating a database. Take an example

of an order that is received from a queue. Then for auditing purposes it is logged into a

database. Also assume that another message that is part of the transaction arrives but this

time it fails when attempting to update the audit log. If MSMQ transactions were in use,

the MSMQ activities would be rolled back, but the database work would not. Such a

situation is little better than using no transaction processing at all, because the result could

still be unreliable data in your system. The solution is to use a form of transaction

processing that is capable of handling the database and MSMQ work as part of the same

transaction. MSMQ provides this capability via a technology known as MS DTC

(Microsoft Distributed Transaction Coordinator). Using DTC allows you to initiate a

transaction and then proceed to use resources from multiple sources that support DTC,

such as SQL Server and Oracle, and then have those resources participate in the

transaction, committing or rolling back as appropriate when the transaction ends.

Using COM+ for DTC Support

As mentioned earlier the database must support DTC, but you must also make your class

support it too. Before .NET, this was done by creating a COM component and then

registering it in a COM+ application (or if you’ve been in the game awhile an MTS

package). Well Microsoft hasn’t done away with COM+ yet, so we need to make our

classes suitable for running in COM+. This is achieved by inheriting from the

System.EnterpriseServices.ServicedComponent class and then setting the class up with

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 6

attributes indicating that it requires transactions. For the following example we will write a

component which will add an Order to the Northwind database. We will create a new class

file for the new component called OrdersUpdateCOM+. As the name suggests it will be a

COM+ component. We will call this component from the original Orders class via its

Update method. For now let’s concentrate on what is required to make a class support

COM+.

Imports System.EnterpriseServices

Imports System.Reflection

' Supply the COM+ application name.

<Assembly: ApplicationName("SalesOrders")>

' Supply a COM+ Type.

<Assembly: ApplicationActivation(ActivationOption.Library)>

' Define where the strong name Key pair is

<Assembly: AssemblyKeyFileAttribute("KeyPair.snk")>

Namespace Sales.COMPlus

 <Transaction(TransactionOption.Required)> Public Class OrderUpdate

 Inherits ServicedComponent

 Sub Update(ByVal order As Sales.Order)

 Try

 ' Do your database and other work here

 ' Now tell COM+ the transaction completed successfully

 ContextUtil.SetComplete

 Catch ex As Exception

 ' Do error handling here if required

 ' Now tell COM+ the transaction failed

 ContextUtil.SetAbort

 Throw New Exception("Unable to save Order:" & order.CustomerID)

 Finally

 'Check if the connection object is open and if so close it!

 If conDatabase.State = ConnectionState.Open Then

 conDatabase.Close()

 End If

 End Try

 End Sub

 End Class

End Namespace

Looking at the code presented, you’ll notice that we are using two namespaces

System.EnterpriseServices, which contains the ContextUtil class, ApplicationName and

ApplicationActivation attributes. The other System.Reflection contains the

AssemblyKeyFileAttribute attribute. The attributes tell COM+ details of how it should be

registered. An example of which can be seen if you look in Component Services, which

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 7

you can find by going to Control PanelAdministrative ToolsComponent Services. This

then displays the components which have been registered with COM+. At the conclusion

of this Chapter you’ll see the sample we are about to create there too as shown in Figure

5-3.

Figure 5-3. Component Services with a registered COM+ application

When you register a COM+ component you need to determine whether the component

will run in its own process (ActivationOption.Server) or in the same process as the caller

(ActivationOption.Library). I have opted for the latter as it means we can take advantage

of dynamic registration which doesn’t require us to register the assembly in the GAC

(Global Assembly Cache), which is fine for our purposes. Another thing that is important

when using COM+ is that each assembly that contains a COM+ class must have a strong

name. You can ensure that a name is globally unique by signing an assembly with a strong

name. To do this you need a public/private key pair, which is a file that is easily generated

with the following command line utility:

sn -k KeyPair.snk

If you’re using VS.NET as we are in our examples then this file must be in the same

directory as the VS.NET solution file otherwise the file won’t be found. You assign this

file to your assembly by using the AssemblyKeyFileAttribute attribute. Also all COM+

classes must be inherited from the ServicedComponent class which has all the required

code to be a COM+ component. The only other thing left to do is tell COM+ what type of

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 8

transaction support we want our class to have. This is done with the Transaction class

attribute, which can be either of the following.

 * Disabled

 * NotSupported

 * Required

 * RequiresNew

 * Supported

For our class we have set the Required option as it will ensure that we always work in

a transaction even if the caller doesn’t have an existing transaction.

Once we have set the class to use COM+, we have done enough to indicate that our

class will participate in a transaction. It is therefore enough that we are running our code

within a COM+ hosted component to enlist them into the current transaction. However,

there is one extra piece of code that you will require when using transactions within a

COM+ component. Those of you who are already familiar with COM+ will recognize, the

SetComplete and SetAbort methods found in the System.EnterpriseServices.ContextUtil

class. Simply put you should call one of these methods at the end of your routine to either

commit the transaction (SetComplete) or to rollback the transaction (SetAbort).

The ContextUtil class can do more than is indicated here, but this is out of the scope

of the Chapter, if you wish to learn more about this then I encourage you to search for

‘Writing Serviced Components’ in the .NET documentation for more information.

Note: You can also use the <AutoComplete()> attribute in replace of SetComplete and

SetAbort. Using this attribute will automatically call SetComplete at the end of the

routine if no exceptions occurred, otherwise it will call SetAbort if an exception is

thrown. Personally, I prefer to use the more explicit version in my code.

Using COM+ to update a Database

This is where the fun really starts as we are now going to create an update method in our

new OrdersCOM+ component. We will then call this class from our standard Orders class,

which will allow us to use our existing Orders class but have it also be part of a

transaction if we decide to store the data. The following code is all that is required for the

COM+ update order class:

Imports System.EnterpriseServices

Imports System.Reflection

' Supply the COM+ application name.

<Assembly: ApplicationName("SalesOrders")>

' Supply a COM+ Type.

<Assembly: ApplicationActivation(ActivationOption.Library)>

' Define where the strong name Key pair is

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 9

<Assembly: AssemblyKeyFileAttribute("KeyPair.snk")>

Namespace Sales.COMPlus

 <Transaction(TransactionOption.Required)> Public Class OrderUpdate

 Inherits ServicedComponent

 ' This method will take an existing order and use the data to update

 ' the database

 Sub Update(ByVal order As Sales.Order)

 Const conConnectionString As String = _

 "server=(local);database=NorthWind;uid=sa;pwd="

 Dim conDatabase As SqlClient.SqlConnection

 Dim cmdCommand As SqlClient.SqlCommand

 Dim intOrderID As Integer

 Try

 ' Do your database and other work here

 ' This example will only deal with New orders

 Debug.WriteLine(ContextUtil.TransactionId())

 If order.OrderID = 0 Then

 ' We have a new order

 conDatabase = New _

 SqlClient.SqlConnection(conConnectionString)

 cmdCommand = New SqlClient.SqlCommand()

 ' First we create the Order Entry

 With cmdCommand

 .CommandType = CommandType.StoredProcedure

 .CommandText = "usp_Order_Insert"

 .Parameters.Add("@CustomerID", SqlDbType.NChar).Value _

 = order.CustomerID

 .Connection = conDatabase

 .Connection.Open()

 intOrderID = CType(.ExecuteScalar, Integer)

 End With

 ' Next we create the OrderDetail Entries

 Dim objLineItem As Sales.LineItem

 For Each objLineItem In order.OrderDetails

 ' Ensure we have a fresh Command Object each time

 cmdCommand = New SqlClient.SqlCommand()

 With cmdCommand

 .Connection = conDatabase ' Still open from before

 .CommandType = CommandType.StoredProcedure

 .CommandText = "usp_OrderDetails_Insert"

 .Parameters.Add("@OrderID", SqlDbType.Int).Value _

 = intOrderID

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 10

 .Parameters.Add("@ProductID", SqlDbType.Int).Value _

 = objLineItem.ProductID

 .Parameters.Add("@UnitPrice", _

 SqlDbType.Money).Value = objLineItem.UnitPrice

 .Parameters.Add("@Quantity", _

 SqlDbType.SmallInt).Value = objLineItem.Quantity

 .Parameters.Add("@Discount", SqlDbType.Real).Value _

 = objLineItem.Discount

 If .ExecuteNonQuery() = 0 Then

 ' No records added, so its an ERROR!

 Throw New Exception("Unable to Insert Record")

 End If

 End With

 Next

 Else

 Throw New Exception("Existing Orders not supported yet.")

 End If

 ' Now tell COM+ the transaction completed successfully

 ContextUtil.SetComplete()

 Catch ex As Exception

 ' Do error handling here if required

 ' Now tell COM+ the transaction failed

 ContextUtil.SetAbort()

 Throw New Exception("Unable to save Order:" & order.CustomerID)

 Finally

 'Check if the connection object is open and if so close it!

 If conDatabase.State = ConnectionState.Open Then

 conDatabase.Close()

 End If

 End Try

 End Sub

 End Class

End Namespace

This code is relatively straightforward in what it’s doing. Firstly, we setup the class to

work under COM+ as discussed previously. Next we go on to the real work of the class,

which is to take an existing Order object and add it to the database. We do this by adding

the Order to the Orders table and receiving back the new key for use in the next section

which adds the order details. We then add a new order detail record for each item in the

OrderDetails collection of the Orders object. The code could have been made a bit more

efficient, but for simplicity I’ve not tried to make it too complicated. The end result is if

everything goes to plan we have a new entry in the Orders table and n records in the Order

Details table. Something you may find interesting is that in the Catch block after aborting

the transaction I throw an exception. This is to alert the calling application that an error

has occurred. This can save the calling application doing any unnecessary processing given

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 11

the transaction has already failed. You will also notice I’ve made use of namespaces as

well, this is to make it easier to see that a particular object is a COM+ one by placing it in

a namespace that highlights this. I’ve also used SQL Server stored procedures, and for

those interested in what they look like I’ve included them here. You can create these

stored procedures easily by using the techniques discussed in SQL Server section of

Chapter 1.

Create a new Order.

CREATE PROCEDURE usp_Order_Insert

 (

 @Customerid nchar(5)

)

AS

INSERT INTO Orders

 (CustomerID)

VALUES (@CustomerID)

/* Return the ID of the record we just created */

SELECT SCOPE_IDENTITY() As OrderID /*This is more accurate than @@IDENTITY */

Add an Order Detail for a given Order

CREATE PROCEDURE usp_OrderDetails_Insert

 (

 @OrderID int,

 @ProductID int,

 @Quantity smallint,

 @UnitPrice money,

 @Discount real

)

AS

INSERT INTO [Order Details]

 (OrderID, ProductID, UnitPrice, Quantity, Discount)

 VALUES (@OrderID, @ProductID, @UnitPrice, @Quantity, @Discount)

RETURN

Now we have all the code required to add the Order object to the database. We only

need to wire up this code to the original Order object. To do this we simply add the

following code to the existing Save method.

Sub Save()

 ' This method will save the record

 Dim objOrdersCOMPlus As New Sales.COMPlus.OrderUpdate()

 objOrdersCOMPlus.Update(Me)

End Sub

This is all the code needed to allow our Orders object to participate in a DTC

transaction, which means if anything goes wrong it will automatically rollback any changes

made.

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 12

Example 5c – Creating a DTC enabled Message receiver

So now that we have COM+ enabled our Orders object, we can create our message

receiver which will process incoming messages and then have them update the database:

' Supply the COM+ application name.

<Assembly: ApplicationName("SalesOrders")>

' Supply a COM+ Type.

<Assembly: ApplicationActivation(ActivationOption.Library)>

' Define where the strong name Key pair is

<Assembly: AssemblyKeyFileAttribute("KeyPair.snk")>

… Other code omitted for brevity …

Sub ProcessMessage()

 Dim objMessageQueue As MessageQueue

 Try

 ' Retreiving an object from a message queue

 objMessageQueue = New MessageQueue(Constants.MQ.LocalTransQueue)

 objMessageQueue.Formatter = New XmlMessageFormatter(New _

 Type() {GetType(Order)})

 Do While objMessageQueue.GetAllMessages.Length <> 0

 Dim objMessage As Message = objMessageQueue.Receive(New _

 TimeSpan(0, 0, 10), MessageQueueTransactionType.Automatic)

 Dim objOrder As Order = CType(objMessage.Body, Order)

 ' Process message

 objOrder.Save()

 MessageBox.Show("Processed Order for Customer: " & _

 objOrder.CustomerID)

 Loop

 ContextUtil.SetComplete()

 Catch ex As Exception

 MessageBox.Show(ex.Message, "Error")

 ContextUtil.SetAbort()

 Finally

 objMessageQueue.Close()

 End Try

End Sub

The code to send the messages is not much different to that of Example5a, however

we have included a separate example in the download which will send a good message and

a bad one to demonstrate the rollback features. However, the code above is new and

deserves some discussion. The most important thing to understand is that in order for

COM+ and DTC to do its work, all parts of the transaction must share the same

transaction id. This means you have to create another COM+ object which will set the

transaction context. This is exactly the same procedure we used earlier for our Orders

object. As you can see the attributes are identical to those we used earlier. Although not

shown here the above class also inherits from ServicedComponent, as all COM+ classes

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 13

must do. Apart from the COM+ changes there is one very important difference regarding

how we receive our messages. Unlike the internal transactional support of MQ’s, external

support doesn’t use a transaction object. Transactions are handled completely by COM+;

all you need to do is specify that MSMQ uses any existing transaction context. You do

this by simply specifying MessageQueueTransactionType.Automatic as the transaction

type when using the Receive method. Our example here will process all the messages on

the queue until either there’s an error or there’s no more messages to process. If you run

Example5c – Send DTC Message (No Error) followed by Example5c – Receive/Process

DTC Message then you’ll notice you have two new records in your NorthWind database

(see Figure 5-4). However, if you run Examle5c – Send DTC Message (Error). You’ll

notice that although the first message is processed correctly, the second message errors.

This has the effect of rolling back both messages and also leaves the original messages in

the queue ready to be processed again. The example here however doesn’t account for

this and so you won’t be able to process any good messages unless you purge the bad

ones; you can use Server Explorer to do this.

Figure 5-4. Enterprise Manager

This is easily the hardest section in this Chapter, and I really encourage you to play

with these examples and get them working on your machine. COM+ can be tricky if

you’re not familiar with it, or even if you are it’s a bit different in .NET. I would say the

dynamic registration that .NET provides does make using COM+ easier than what it was

previously, however COM+ is again a large section which I unfortunately can’t cover in

the depth it deserves. There are resources at the end of the Chapter where you can get

more information on COM+.

Acknowledgements, Time outs and Journaling

As we have seen so far it’s fairly easy to send a message, and then retrieve the message.

We can even create transactions when we send or receive a message. However, we cannot

wrap the entire process within a transaction. That is, we can create a transaction that

handles the sending of the message, and another transaction that handles the receiving of

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 14

the message, but we can’t have a transaction that handles both the sending and receiving

of the message.

This can cause an issue as the application that sent the message may not know if the

application receiving the message processed it correctly. This limitation is just another

aspect of asynchronous processing and it means we have to use different methods to

determine if a message has made it all the way through the system correctly. Some of the

methods include the use of acknowledgement messages, time outs, and journal queues.

This is what we will be covering in this section.

Acknowledgements

When we call a method on an object, we can get immediate feedback on the success of the

operation. Asynchronous processing by its nature doesn’t do this, so a mechanism needs

to be provided that will give us this feedback. In MSMQ, this mechanism is provided by

acknowledgements, which are special messages generated by MSMQ which are sent to

inform the sender that a message was successfully delivered and/or retrieved at the

destination.

All the examples that have been presented thus far have used a local message queue,

which doesn’t require notification of the messages delivery. However should our

application be working in an offline (disconnected) mode, then this acknowledgement

becomes more important, so we know the message has reached its destination. MSMQ

provides the following acknowledgement masks when you send a message:

 * FullReachQueue: Success or failure of the message to be delivered to
the queue.

 * FullReceive: Success or failure of the message to be received.

 * NegativeReceive: Failure of the message to be received.

 * NotAcknowledgeReachQueue: Failure of the message to be delivered.

 * PositiveArrival: Successful delivery of the message.

 * PositiveReceive: Successful receive of the message.

Making use of these settings is again quite straightforward and only requires that you

setup a non-transactional queue where you want the messages to be delivered, and to

determine what settings you want to use. You will need to use this administration queue

to receive any of the messages that are generated by the system.

Example 6a – Setting Acknowledgements

Building on Example2, we only need to modify the message properties section, so that it

looks like the following to start supporting acknowledgements:

Dim objMessage As New Message()

With objMessage

 .Body = objOrder

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 15

 .Priority = MessagePriority.Highest

 ' We want them to hang around between computer restarts

 .Recoverable = True

 .AdministrationQueue = New MessageQueue(Constants.MQ.LocalAckQueue)

 .AcknowledgeType = AcknowledgeTypes.FullReachQueue Or _

 AcknowledgeTypes.FullReceive

End With

The AcknowledgeType uses a bit mask, so you can define one or all of the possible

settings using an Or between your options. This section of code sets the

AdministrationQueue to the queue where the messages are to be sent, which in this case is

Constants.MQ.LocalAckQueue. Then we ask that we be notified when the message is

delivered and also when it has been received (i.e. read off the queue). We also made the

messages recoverable; this will ensure that we don’t loose any notifications. Also, ensure

that you have created the queue first otherwise you’ll receive an exception.

Example 6b – Receiving Acknowledgements

We have just learned how to send a message that will notify us when it’s arrived and when

it’s been read. However, the notifications are of little use unless we know how to read

them. The messages that are sent are slightly different to normal messages, in that they

usually don’t contain any body information, just header information. However, the good

news is that they are received in exactly the same way as regular messages from the

administrative queue you specified when sending the message. Once we have the message

however, we need to make use of other properties of the Message object, to compensate

for there being no body information.

Table 5-4. Default values for MessageReadPropertyFilter.

Property Default

Value

.NET Docs

AcknowledgeType True False

Acknowledgment True False

AdministrationQueue True True

AppSpecific False False

ArrivedTime False True

AttachSenderId False False

Authenticated False False

AuthenticationProviderName False False

AuthenticationProviderType False False

Body True True

ConnectorType False False

CorrelationId False True

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 16

DefaultBodySize 1024 1024 bytes

DefaultExtensionSize 255 255 bytes

DefaultLabelSize 255 255 bytes

DestinationQueue False False

DestinationSymmetricKey False False

DigitalSignature False False

EncryptionAlgorithm False False

Extension False False

HashAlgorithm False False

Id True True

IsFirstInTransaction False False

IsLastInTransaction False False

Label True True

MessageType True False

Priority False False

Recoverable False False

ResponseQueue True True

SenderCertificate False False

SenderId False False

SenderVersion False False

SentTime False True

SourceMachine False False

TimeToBeReceived False False

TimeToReachQueue False False

TransactionId False False

TransactionStatusQueue False False

UseAuthentication False False

UseDeadLetterQueue True False

UseEncryption False False

UseJournalQueue True False

UseTracing False False

Earlier we learned how to read messages off the queue using the default properties.

However, sometimes we need to ask for extra properties to be read as well. A list of the

properties available can be seen in Table 5-4 along with their default behavior. The last

column is what the .NET documentation has, but as you can see this is actually fairly

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 17

inaccurate; Table 5-4 contains the correct version and the version in the .NET

documentation. In our case we need to retrieve the CorrelationID which isn’t returned by

default; contrary to what the documentation tell us. To ask that a property be retrieved,

we need to set the respective property on the MessageReadPropertyFilter object.

objMessageQueue = New MessageQueue(Constants.MQ.LocalAckQueue)

Dim objMessage As Message

' This is the property which identifies the message

objMessageQueue.MessageReadPropertyFilter.CorrelationId = True

' We will wait only 5 seconds for the Ack to arrive.

objMessage = objMessageQueue.Receive(New TimeSpan(0, 0, 5))

If objMessage.MessageType = MessageType.Acknowledgment Then

 MessageBox.Show("The following Ack was received: " & _

 objMessage.Acknowledgment.ToString & " by " & _

 objMessage.CorrelationId.ToString)

End If

Tip: A timeout acknowledgement does contain the body of the original message allowing for

easy resending of the message if required.

Example 6c – Receiving Messages

This example is really only here to allow you to experiment with sending and receiving

messages. To fully test how the previous examples work, try sending a message using

Example1a, then try Example6b. You should get an error message telling you that there’s

a timeout. This is because the earlier example didn’t use Acknowledgements, but if you

run Example6a then Example6b you should get a confirmation that the message arrived at

the destination queue. If you run Example6b again however you’ll get another timeout as

there are no more messages. Now, try running Example6c, this will receive the message

sent (Example1a had a default priority of 3 and Example6a a priority of 7, so Example6a

will be received first), and if it was a message that requested acknowledgements, then

when you run Example6b again you should get confirmation that the message was read

see Figure 5-5.

Figure 5-5. – Acknowledgement of message Received

' Retreiving an object from a message queue

objMessageQueue = New MessageQueue(Constants.MQ.LocalNonTransQueue)

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 18

objMessageQueue.Formatter = New XmlMessageFormatter(New Type() {GetType(Order)})

Dim objMessage As Message = objMessageQueue.Receive(New TimeSpan(0, 0, 10))

Dim objOrder As Order = DirectCast(objMessage.Body, Order)

MessageBox.Show("(Message: " & objMessage.Label & ") The customer (" & _

 objOrder.CustomerID & "): has ordered " & objOrder.OrderDetails.Count & " _

 products.")

Timeouts

As we learned we can ask that the system notify us of when a message arrives at the

destination queue, and when it is received amongst other things. However, what happens

if a message is never received, that is some type of error occurs which prevents it from

being received. As there hasn’t been any failure as it was delivered, there wouldn’t be any

message sent back to the sender telling them that the message can’t be received. The

solution is to tell MSMQ that unless the message has been received within a specified

timeframe it should be considered as a failed transmission. This functionality is provided

by way of timeouts in MSMQ, which allows you to specify the time that a message has to

arrive at the destination and also how long it has to be received once it gets there. Should

either timeout (i.e. fail) then they will both have the same effect, MSMQ will treat it as an

error, remove the message from the queue and send any acknowledgements that were

requested.

Example 7 – Timeouts

The two properties that need to be set are TimeToReachQueue and TimeToBeReceived,

modifying Example6a, to include the following makes the message time sensitive:

With objMessage

 .Body = objOrder

 .Priority = MessagePriority.Highest

 .AdministrationQueue = New MessageQueue(Constants.MQ.LocalAckQueue)

 .AcknowledgeType = AcknowledgeTypes.FullReachQueue Or _

 AcknowledgeTypes.FullReceive

 ' We want them to hang around between computer restarts

 .Recoverable = True

 ' This message must arrive within 10 seconds

 .TimeToReachQueue = New TimeSpan(0, 0, 10)

 ' This message must be received within 15 seconds

 .TimeToBeReceived = New TimeSpan(0, 0, 15)

End With

This example should never cause a timeout on the delivery as its all on the local queue,

however this does become important when sending messages across the Enterprise. We

can simulate the timeout of receiving the message by running Example7, then waiting 15

seconds. Running Example6b should then notify us that the message was delivered

correctly. Running it again will then notify us that the message has failed to be received in

the allotted time.

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 19

Journaling & Dead-letters

Journaling and Dead-letter queues, serve a similar purpose to that of acknowledgements,

in that they provide a way to track a message. When you send a message it is possible to

have a copy of that message stored in a journal queue to act like a form of auditing. Each

queue has its own associated journal queue to hold copies of messages as they are

received from the queue. Each MSMQ machine also has a single journal queue that can be

used to keep copies of each message that is sent from that machine. Dead-letter queues on

the other hand deal with messages that generate errors such as timeouts. When such an

event happens the message is sent to the Dead-letter queue of the sender’s computer. Both

of these queues are system queues and therefore shouldn’t be created.

Example 8a – Keeping copies of received messages

The property that needs to be set is UseJournalQueue on the MessageQueue object,

modifying Example6c, to include the following creates a copy of any message read:

objMessageQueue.UseJournalQueue = True

You can test this by running Example6a which sends a message, then running

Example8a. Using the Server Explorer in VS.NET to look in the JournalQueue (remember

to refresh) you will see a copy of the messages that were received. Assuming your queues

were empty prior to running the above then you should see a similar result to that in

Figure 5-6; where the entries in the Ack queue represent the successful send and receive

of the message.

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 20

Figure 5-6. – Journaling

Example 8b – Keeping copies of sent messages

The property that needs to be set is UseJournalQueue on the Message object or the

DefaultPropertiesToSend.UseJournalQueue property of the MessageQueue object if

you’re not using a message object. Setting these properties will ensure that all messages

that are sent are copied into the journal queue. There is however a catch, in that it will

only work for public queues. Which means you need to have a computer running the

Server version of NT 4.0, Windows 2000 or Windows .NET (Windows XP doesn’t have a

Server version), and have the queue setup as public. From a coding standpoint however,

there really is no difference except in the path used for the queue. To get Example8b to

work in your environment, you’ll need to modify the queue constant to match one that’s

on your network. The required code is again only one line which can be added easily to

the code of Example7.

objMessageQueue = New MessageQueue(Constants.MQ.PublicNonTransQueue)

With objMessage

 .Body = objOrder

 .Priority = MessagePriority.Highest

 .AdministrationQueue = New MessageQueue(Constants.MQ.LocalAckQueue)

 .AcknowledgeType = AcknowledgeTypes.FullReachQueue Or _

 AcknowledgeTypes.FullReceive

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 21

 ' We want them to hang around between computer restarts

 .Recoverable = True

 ' This message must arrive within 10 seconds

 .TimeToReachQueue = New TimeSpan(0, 0, 10)

 ' This message must be received within 15 seconds

 .TimeToBeReceived = New TimeSpan(0, 0, 15)

 ' Make a copy of any messages we send

 .UseJournalQueue = True

End With

Once a message arrives in a journal queue it won’t be removed unless you receive it,

like you would a normal message. Possible uses for journal queues are handling failed

messages or negative acknowledgements. For example, if you receive an

acknowledgement indicating that a message timed out, then you may wish to resend the

message again. Using the CorrelationID from the acknowledgement, you can locate the

message within the journal queue, and then resend it again.

Example 8c Receiving messages from Public Queues

The code required to receive a message from a public queue as mentioned previously is

exactly the same as it is for receiving one from a local queue. The only difference is that

you use a different queue name. The following shows the difference between a local queue

name and a public queue name:

Public Const LocalAckQueue As String = ".\private$\Ack"

Public Const PublicNonTransQueue As String = "webserver\NonTransactional"

The important thing to notice here is that the public queue doesn’t have the word

public as part of the address. The private queue however does that this. This example is

primarily to allow you to receive message that were posted using Example8b.

Example 8d – Resending a Timed out message

As was mentioned earlier, it is possible to take action based on a negative

acknowledgement. Here I’ll demonstrate how to take read a ReceivedTimeout message

and then resend the message again if the user elects to do so. The first part is simple

enough and has been covered already. You simply need to read the acknowledgements

from the local queue where they are sent. Then based on the type of acknowledgement we

can determine if the message has timed out or not:

Shared Sub Main()

 Dim objAckQueue As MessageQueue

 Dim objMQ As MessageQueue

 Try

 ' Define the queue from which to receive the Acks

 objAckQueue = New MessageQueue(Constants.MQ.LocalAckQueue)

 Dim objMessage As Message

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 22

 objAckQueue.UseJournalQueue = True

 ' If we want to resend we need this information

 objAckQueue.MessageReadPropertyFilter.DestinationQueue = True

 ' We will wait only 30 seconds for the Ack to arrive.

 objMessage = objAckQueue.Receive(New TimeSpan(0, 0, 30))

 Select Case objMessage.Acknowledgment

 Case Acknowledgment.ReceiveTimeout

 ' We will ask if we want to resend the message

 If MessageBox.Show("The message: " & objMessage.Label & _

 " just timed out, do you want to resend?", "Time out", _

 MessageBoxButtons.YesNo) = DialogResult.Yes Then

 ' Set the destination of the new message to that of the old.

 objMQ = New _

 MessageQueue(objMessage.DestinationQueue.FormatName)

 ' Now send the duplicate message

 objMQ.Send(copyMessage(objMessage))

 End If

 Case Else

 MessageBox.Show("Ack: " & objMessage.Acknowledgment.ToString & _

 " arrived")

 End Select

 Catch ex As Exception

 MessageBox.Show(ex.Message, "Error")

 Finally

 objAckQueue.Close()

 objMQ.Close()

 End Try

End Sub

There is one statement here which I haven’t covered yet, which is the

DestinationQueue property of the MessageReadPropertyFilter. If you don’t set this

property then the destination queues details are not retrieved. One we have this

information we are ready to copy the message and then resend it.

When you resend a message you need to create a new message object, and then

transfer the data from the old message to the new one. However, some of this data can’t

be recovered, such as timeouts, administration queues etc. You’ll therefore need to recode

these again when you recreate the message. Another thing to note about the following

code is how we transfer the data of the message body. In the examples I’ve seen they all

try to read the data back from the Body property back into the original object. This is fine

if you know what the original object is, however if you want to go generic (always good

for reuse), then you shouldn’t care what the original object was. To achieve this we will

transfer the BodyStream from the original message to the new message. This will allow us

to copy either simple XML or binary messages, without knowing which it is. To do this

we read from the BodyStream of the original message and write the same data back to the

new message BodyStream. As can be seen from the code, this only takes two lines of

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 23

code. You may have remembered that I mentioned this technique in the previous Chapter

when discussing the Formatter property and this is a good example of its use.

Note: A Stream object is the abstract base class of all streams. A stream is a sequence

of bytes, which can be in memory, a file, or some other device. The Stream class and its

derived classes provide a generic view of these different types of input and output,

isolating the programmer from the specific details of the operating system and the

underlying devices. It is critical to master the Stream class given its widespread use

within the framework.

 Shared Function copyMessage(ByVal originalMessage As Message) As Message

 Dim objNewMessage As New Message()

 ' Use the BinaryReader to easily read the BodyStream object

 Dim objReader As New System.IO.BinaryReader(originalMessage.BodyStream)

 Dim intBytes As Long

 Try

 ' We need to convert the Long to an Integer as the Reader only

 ' supports Integers. This is enough for us as an Integer can now

 ' handle numbers greater than 4 Million (Message limit is 4Mb)

 Dim intLength As Integer = _

 CType(originalMessage.BodyStream.Length, Integer)

 ' Copy one stream to another

 objNewMessage.BodyStream.Write(objReader.ReadBytes(intLength), 0, _

 intLength)

 With objNewMessage

 .AdministrationQueue = New _

 MessageQueue(Constants.MQ.LocalAckQueue)

 .AcknowledgeType = AcknowledgeTypes.FullReceive Or _

 AcknowledgeTypes.FullReachQueue

 .TimeToBeReceived = New TimeSpan(0, 0, 40)

 .TimeToReachQueue = New TimeSpan(0, 0, 10)

 .UseJournalQueue = True

 .Label = originalMessage.Label & "(Copy)"

 End With

 Return objNewMessage

 Finally

 ' Ensure we close any resources used

 objReader.Close()

 End Try

 End Function

Once we have copied the message object to another as returned by the copyMessage

function, we are able to resend it as if it were created for the first time.

DD RR AA FF TT VV EE RR SS II OO NN 00

 © Copyright 2007 Garry McGlennon p. 24

WMI

This will be the shortest section of WMI in the book as there is actually no support for

MSMQ. Well that’s not completely true as there are a few performance counters that

relate to MSMQ which are:

 * Win32_ PerfRawData _MSMQ_MSMQQueue

 * Win32_PerfRawData_MSMQ_MSMQService

 * Win32_PerfFormattedData_MSMQ_MSMQQueue

 * Win32_ PerfFormattedData _MSMQ_MSMQService

You will have to make use of the managed classes within the framework which has

been the topic of the last two chapters.

Summary

The past two Chapters have introduced a lot of material which if mastered will produce

more reliable and responsive systems. This Chapter covered the more advanced topics

relating to MQ’s where we learned that MSMQ offers many methods to monitor the

progress of our messages throughout the system, and even allows us to know when we

should resend a message because of a failure. We also went into some detail on how

transactions are handled both internally (simple method) and externally using COM+ and

DTC. As was mentioned earlier, the topic of Message Queues and MSMQ is large and I

have not covered every aspect which deserves attention as this is not really a book on

MSMQ. However, the knowledge you have now will allow you to start writing quite

comprehensive MSMQ applications and will hopefully help you understand the rest of the

documentation that comes with .NET.

Resources:

MSMQ Home: http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/msmq/msmq_overview_4ilh.asp

MSMQ Triggers: http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/msmq/msmq_about_triggers_114j.asp.

